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Considered is a class of rth order delay-dependent priority queuing dis- 
ciplines in which a customer from the pth priority group, who arrives at 
time 7', has a priority q,(t) at time t given by qv(t) = bv(t- T)r. The main 
result states that the expected wait on queue for p-type customers in an 
rth order system with parameter set {b,,} is identical to the wait in any 
other such system, say one of order r' with parameter set {b,'} if these 
parameters are chosen in the proper manner. From this, using the results 
due to KLEINROCK for the first order systems, we obtain the expected 
wait on queue, conditioned on the priority groups, for any rth order sys- 
tem. This class of queuing disciplines ranges from COBHAM'S fixed prior- 
ity system (for r->O) to the first-come-first-served system (for r-> oo). 

For the case of two priority groups the set {b.} is chosen so as to mini- 
mize a class of delay-dependent cost functions. Results from a computer 
simulation are given to display the behavior of the waiting time vari- 
ance. 

AMONG those priority queuing systems considered in the past is the 
delay-dependent queue discipline studied by KLEINROCK . [1 In this 

discipline, the priority of a customer is a linearly increasing function of the 
amount of time that he has spent in the system. The rate at which priority 
increases is given by a parameter assigned to a customer's priority class. 
This set of parameters provides the system designer with a number of 
degrees of freedom with which to manipulate a customer's average waiting 
time. 

A natural extension to the delay-dependent discipline is one in which a 
customer's priority increases in proportion to some arbitrary power of 
his elapsed time, rather than the first power as in reference 1. It is to this 
generalized delay-dependent priority system that we address ourselves in 
this paper. 

THE MODEL 

As IN reference 1, we consider a total of P different priority groups. Units 
from group p (p = 1, 2, ** P) arrive in a Poisson stream at rate XA, units/ 
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sec to a single-server system; each unit from priority class p has a required 
service time selected from an exponential distribution with mean 1/, 
We define* 

X- Ep-l~p XP(1) 

1/y-E_ xp/(x,=), (2) 

PP =-XP/YP7 (3) 

P ='X p:=p ~~~~~(4) P= A/ = EP=1 Pa () 

W-x px/#X (5) 

When a customer from the pth priority group enters the queue at time T 
(say), he is assigned a number bp, where 

0 < bi!b2 - bp. (6) 

We define, for any nonnegative number r, an rth order delay dependent 
priority discipline as one which calculates the priority q (r) ( t) at time t 
associated with a customer arriving at time T as follows 

q(r)(t (t- T)rbp, (7) 

where t ranges from T until the time at which this unit's service is completed. 
Whenever the service facility is ready for a new unit, that unit with the 
highest instantaneous priority q(r) (t) is then taken into service. Whenever 
a tie for the highest priority occurs, the tie is broken by a first-come- 
first-served rule. Contrary to the usual convention, a unit with priority 
q(t) is given preferential treatment over a unit with priority q'(t) where 
q(t) > q'(t). We note that units from higher priority groups gain priority 
at a faster rate (bp) than those from lower priority groups. 

We further define 
W(r) -Expected value of the time spent in the queue of an rth order 

system for a unit from group p (steady-state waiting time). 
The coupling between units (customers) of different priority classes is 

illustrated in Fig. 1. A unit from priority group pi arrives at time T1 and 
a unit from priority group p2 arrives at time T2. Both units gain priority 
proportional to the rth power of the time they spend in the system; how- 
ever, the unit from group P2, being from a higher priority class (p2> pl), 

has a larger proportionality constant, bp2> b,. In this example, if the 
service facility becomes free between T1 and To, the unit from group pi 

* Note that Wo is the expected time to complete service on the unit found in the 
service facility (see COBHAM[2])). 

t The equality between adjacent b, is allowed for completeness. However it is 
clear that any priority groups with identical values of bp can be grouped together 
into a single group. 
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would be taken into service before the unit from group p2; but if the facility 
does not become free until after To, the reverse is true. Thus we see that 
it is possible for units to change their relative positions in the queue. 
It should be noted that there can be at most only one interaction 
between any two units. 

EXPECTED WAITING TIME 

CONSIDER two delay-dependent priority systems, one of order r with a 
set of parameters {bp} and the other of order r' with parameter set {b,'}. 
In the Appendix, we prove the following theorem. 

I ~~~~~~qtr)()= (t -T2) rbp2/ 

q(r)(t) Iq(r) (t) Z(t -Tlrbp- D 

0 Tj T2 To 

t 
Fig. 1. Coupling of different priority units. 

THEOREM 1. If we choose 

(bp/bp+?) lr=(bvl/b+)lr (p1, 2,P-1) (8) 

then P (9) 

This main theorem states that all rth order systems may be charac- 
terized (with respect to average waiting times) by an roth order system 
(for any ro > 0) through a suitable change of parameters as given by 
equation (8). The case for ro= 1 has already been treated by Kleinrockt'1 
and so, in order to obtain W(t) we appeal to his results and obtain the 
following two theorems. 
THEOREM 2. For an rth order delay dependent priority system without pre- 
emption, and O<p<l, 
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W~r = {[Wo/(1 -p)]- L'i' pWi[1 -(bi/bp)l/rI}/ 

{1 ?-X p[i- (bp/bi);1r]}. (p== 1, 2, , ) (10) 

A solution to this type of recursive equation may be found in reference 1. 
THEOREM 3. For an rth order delay-dependent priority system with pre- 
emption (of the preemptive resume type), and for 0 < p < 1, 

wP) { W/ 1 - =p)]+S- ( pi/pp) [1-( bp/bi) 
" ] 

E pi (Wi +l/i) [1-(bilbp) ]}/j I1 

I1_ t- E'=P+, pi[ - (bplbi) "r] }. 

r=: r5 2 

r:O0.5 

q(l1t) rO. 2 

bpl r=0 

T T+I 

t 

Fig. 2. qp) (t) for several r. 

For both cases we have (from LITTLE[3) that the expected number 
n.2 of type p customers present in the queue is given by 

(r)XW(r) (2 
n p = Xp WP. ( 12 ) 

Curves of TV(1) may be found in reference 1. 

VARIATION OF W( r) WITH r; LIMITING CASES (r-hO, r->oo) 

IN FiG. 2 we show q(r) (t) for a customer arriving at time T1, with r as a 
parameter. We see that 
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where u(t - T) is the unit step function occurring at time T. Thus, an 
entering customer from group p is assigned a fixed value of priority equal 
to b,. This is the fixed priority system studied by Cobham.12' More- 
over, as r-e oo , q(r) (t) becomes a step function of infinite height at time 
T+ 1. Thus, units that have been in the system for more than one second 
have infinite priority and those that have been in the system for less than 
one second have zero priority. Remembering that a first-come-first- 
served criterion is used to break a tie, the limit as r approaches infinity is a 
strict first-come-first-served system. 

These two limiting cases can also be obtained by taking the limit of 
WTrf. We demonstrate this for the nonpreemptive case only. From 
equation ( 10), for b, < bp r?(p = 1, 2, P - 1), 

1im,.>o Wp(r) = lim(bi /bi + 1) 10 IVrPho 

= [WO/( l-p) - Pi'= PiwiJ/( 1- Z-X+1ip). 
Solving this last set of recursive equations yields 

lim7.o WI'V = W0/( 1 Hi-p pi) (1- L: PX), (13) 

which is the same result obtained by Cobham.[21 Equation (11) reduces to 
the result of WHITE AND CHRISTIE f4 for fixed priorities with preemption. 
Also, 

liMbrO Wp =lM (bi /bi + 1 ) 1relWP 

Both Equations (10) and (11) then give 

lim,,-.w W ( -Wo/ ( 1- P)) ( 14) 

which is the well-known result for a strict first-come-first-served discipline. 
We now consider {bpj to be fixed and display the dependence of War) 

on r. As discussed above, as r-*0 we obtain a fixed priority system[4] 
and as r-e oo we obtain the first-come-first-served system. For r = 1 we 
have the first order delay dependent system."' In Fig. 3 we illustrate the 
general behavior of the expected wait on queue as we vary our priority 
discipline over the class of rth order systems. We show only the non- 
preemptive case (Theorem 2) with P = 5, bp/bppl =1Y2 pp= p/5, for p- 1, 2, 

* 5, p=0.95, Wo=1, andyp =, t. 
As shown by Kleinrock,151 a conservation law exists for a wide class 

priority queuing disciplines. This law states that all disciplines in this 
class conserve the following weighting of the average waiting times: 

Ep=, (pp/p)WP=V1/(1-p), (15) 
where 

Wp= expected wait in queue for member from the pth group, 
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V1-= PZ P 
xp.E(t 2 

E(t ,2)second moment of the (arbitrary) service time distribution 
(whose mean is l/up,) for group p. 

Equation (15), for exponential service times is merely the expression given 
in equation (14), namely, the average wait for a first-come-first-served 
system. This function is shown as the dashed line in Fig. 3, and demon- 
strates what is meant by the conservation law for this particular class of 
rth order delay-dependent priority systems. The wide dispersion of Whi, 

100 

50 _ 

2 - 

W(r) FIRST COME P 
10 If / AFIRST SERVED SYSTEM 

0.5 1 5 10 
+ ~~~~~~~~~~~~~~~~r- 

(FIXED 
PRIORITY SYSTEM) 

Fig. 3. W(r) vs r (b,/b,1= 0.5, p=0.95). 

among the priority groups shown in Fig. 3 is due to the large value of 
p(= 0.95), which causes considerable interaction among conflicting arrivals. 
For smaller values of p, the dispersion is not nearly as great. However, 
as the essence of Theorem 1 shows, the relative waiting times can be ad- 
justed by varying r for a given I b} ; moreover for a given r, variation of the 
bp} accomplishes the same adjustment of relative waiting times [see 

equation (8)]. 
It is interesting to note that the class of rth order delay-dependent 

priority systems covers the spectrum from that queuing discipline that 
separates priority groups to the greatest possible extent (i.e., the fixed 
priority system) to the discipline that does not separate them at all (i.e., 
the first-come-first-served system). 
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COST FUNCTIONS 

IN THIS section we discuss the manner in which the parameter set { be 
may be chosen so as to minimize an appropriately defined cost. 

We consider the following cost function 
C= EP=P C.V (>PW [P 6 

where C is the average cost rate to the system and C, is an appropriate 
cost rate for the pth group (the dimensions of C, change as m changes). 

Below we consider only P 2 for simplicity. We then have 

C-C 01 X[ W~) m~lt x 2[Wr()]ml (17) 

For the nonpreemptive case, we have, from equation (10), 

Wlr) =WO/(1-p){1 -p2[1-(bi/b2)llr]} , (18) 

W2r) = Wo 1-p[l- (bl/b2)lr]}/( 1 -p) { 1-p[l - (b /b2) 1r]}. (19) 

We may then write equation (17) as 

C =(U+8[1- X]m+l)/[1- P2X]m+l (20) 

where the following substitutions have been made 

U= Cl x[Wo/ (1 p) ]m X 

s= C2 X2[W,/(l P)]+l 

x = 1- (b1/b2)". 

Note that only the ratio b1/b2 affects the optimization. From dC/dx- 0, 
we get 

Up2-8pl(1-px)=O0; 

the solution to this equation is then 

x = (l/p) [1- (UP2/8Pl )m]. 

Thus (b1/b2)j r= (1/p3 [(AlCl1A2C2) P) (21) 

provided 0 = (b/b2)< 1. (22) 

Equation (22) results in the two constraints 

Al Cl < 2 C2) 

and P PO 1- Cl/A2C2) 

Summarizing, we find for P= 2 and ,l Cl <Y2 C2, choosing 

0 P <po 

(b//b2) -p > (23) 
Ax 11P 

X 
[(A C1A Ce 1l/m 

P) P>l 
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minimizes the cost of the system where the cost is given by equation ( 17). 
Figure 4 shows a family of curves of (bi/b2)11r vs. p with m as a parameter. 
For this figure yC1/4U2 C2 was arbitrarily set equal to 0.5. 

Note that, for r>O, 

limm-o (bi/b2)11/%=O for all pa 

which is the fixed priority system. This checks with a result of FIFE,[61 

which states for a cost proportional to the number of units in the system the 
best possible priority scheme is a fixed one where the priority classes are 

1.0 

0.6 - 4 

0.6 - 

(b / b)2) 

0.4- 

0.2 

0.25 

01 
0 0. 0.2 0.4 0.6 0.8 1.0 

P 

Fig. 4. Optimal values for (b1/b2)l/r as a function of p for different m. 

ordered by the value of their A Cp, product. Furthermore 

limmno (b,/b2)11r -1, 

which is a first-come-first-served system. 
For the case of finite m, there is some value p = po, (O< po<1) where 

there is a transition from the fixed priority system to one in which the 
priorities are time dependent (see, for example, Fig. 4).- It is forP o<p <1 
that the rth order delay-dependent scheme is shown to be better than the 
fixed or first-come-first-served priority systems although it has not been 
proven that this is the best possible way of assigning priorities. 

SIMULATION 

WHILE expressions for expected waiting times in the first order delay-de- 
pendent, and thus any rth-order system have been obtained, it is interesting 
to study the distribution, particularly the variance, in more detail. To this 
end, a simulation was run for various values of p and r and P =5, b/b,?1 = 0.5 
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and p,=p. Figure 5 shows a sample plot of the waiting-time distribution 
for the -case of p ='0.9 and r -4. It can be seen that the higher priority 
classes tend to have a larger number of units with small waiting times and 
the lower classes have more with larger waiting times. The crossover points 
tend to occur at a time less than the average waiting time of the classes. 
It should also be noted that the distribution tends to look exponential 
although it is extremely difficult to say anything quantitative in this regard. 

Figure 6 shows the simulation results for the variance of the waiting 

500 - 

5" 2 1:} 1-- 

403 0 0 
a)400 - 4 N 

A)\ 5 - 

U-\ 0 

300 \ 

C 

0 5 10 1520 

t~~t 

Fig. 5. Simulation results for the distribution of waiting times. 

time in an r =0.25 and an r =4.0 order system. We note that the diff erence 
in variance among the possible groups tends to disappear as r increases. 
This is to be expected since the queue discipline is approaching the first- 
come-first-served in which no distinction among priority groups is recog- 

< 3 

nzed 

CONCLUSION 

IN THIS paper, we have shown rth order delay-dependent priority schemes 
can be reduced to the simpler delay-dependent system of order one by suit- 
ably choosing the parameter set {bp}. It was also demonstrated that this 
scheme can give an entire spectrum of behavior ranging from the fixed 
priority to the first-come-first-served schemes. The attempt to extend this 
to cover negative values of bp did not yield any definite results, the difficulty 
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here being that it is possible for two competing customers to alternate in 
their relative priority position twice instead of only once. 

For a P=2 system, the optimum selection of {b,} was found for an 
interesting class of cost functions, which depend only on some power of the 
average waiting time. 

Recently, KleinrockE7' has shown that it is possible to choose the param- 
eter set fbp} in a first order delay-dependent system in such a way that it 
displays characteristics of both delay-dependent and fixed-priority systems. 

600 -P= 1 2 

r =r0.25 1 2 

r 4.0 
500 113 

400. 

VartUP) 

300 1e 

200 

100 7 / 

0 0 0.6 0.7 0.8 0.9 1.0 

p 

Fig. 6. Variance of tp, vs p (b~/b,+ = 0.5, r 0.25, 4.0). 

APPENDIX 

PROOF OF THEOREM 1. .WE REPEAT the two equations of 
THEOREM 1. If we choose 

(bp/bp+1)1Ir= (bp'/b/+1)1Ir' 
(p=l, 2,..., P-) (8) 

then W(r) = W(r) -(9) 

Proof. Two priority schemes are said to be equivalent if the units are taken 
into service in exactly the same order and at the same times in both systems. 
The absolute values of the units' priority are unimportant, only the relative posi- 
tions of the units in the queue must be the same. The positions of units in the 
queue are the same if and only if the same units interact with each other at the 
same point in time in both systems. 

Without any loss of generality, r' is set equal to unity. In order to avoid any 
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confusion, the parameters bp' are relabelled a. so that equation (8) becomes 

(bl/bv+1)lIr=a /ap+i. (p=l, ***, P-1) (24) 

In Fig. 7 we see the priorities of three units from priority classes 1, 2, and 3 
interacting with each other.* It is easy to see that each unit can exchange places 
in the queue with any other unit only once at the most. Thus, in general, if there 
are M units in the system, there can be at most M(M-1)/2 distinct intersection 
times. Thus the total number of times, including arrival times, that must be con- 
sidered is M(M ? 1)/2 for the case in which all units interact with each other. 

We proceed by establishing the proof of the theorem for M 3 and then show 
how to extend this proof in a trivial way for all M. 

q~~~~~~~~Nt) b2 ~~~~~~~~~~~03 
q~~~~~~~r)(b ~~~~~~~~~~~~~02 

T. T2 T3 S12 S13 S23 

t 

Fig. 7. Equivalence of two priority schemes. 

For the case of M =3 (see Fig. 7), there are at most three intersection times, 

sl2, 813, and 823 and three arrival times T1, T2, and T3. The intersection times can 
be computed from the equations of the priorities as follows for i = 1, 2; j =2, 3; 
i ~j: 

bi (sii j- T) r = b j (sq -r T) r(25) 

Solving these three equations we obtain 

sj= [T,-T (b/bj)i/r]11- (bi/bj)i1rl. (26) 

It will now be demonstrated that the identical interactions result at the same 
times in a first order system where the parameters are given by equation (24). 

* We assume that all these units are from distinct priority groups with no loss 
of generality, since units from the same group can never have intersecting priorities. 
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Let us construct a straight line representing the priority of unit 1 in this first order 
system 

q (t)1=a(t-T.), 

such that it has the same priority at s12 as it would have in the rth order system. 
Therefore 

b1 (312-T1) r= a1 (S12- T1). 

Solving these last two for a, and using equation (26) yields, 

al = b 1 (T2 - T1)1 -(b I/b2)1 tr] } 1 (27) 

The line representing unit 2's priority q2' (t) as given by 

q2()(t) = a2(t-T2) 

is now completely determined since it must intersect unit l's priority curve at sl2. 
Thus we have, 

a2(S12-T2) =al(s12- T1). 

Again making use of equation (26) we have 

a2 = b2[(b1/b2)1/,(T2-T1) /( - (b ib/M')1r (28) 

The straight line representing unit 3's priority must now pass through three points. 
It must start at Ta, intersect unit l's priority at sl3 and intersect unit 2's priority 
at s23. Letting unit 3's priority be represented by 

qsl (t) = as (1T3)a 

and using the first two constraints, we have 

a3(s13-T3) =ai(s13-TI). 

Making use of equation (26) and solving for a3, we have 

as= [b1/(b1/b3)11r]_ [(T2- T1)11 - (bi/b2)1 "I r-_1 (29) 

It can be verified that equation (29) also satisfies the third constraint on unit 3, 
which can be expressed as 

a3 (S23- T3) = a2 (S23- T2). 

It is clear that we could have scaled all the a. by the same factor and still 
obtained the same results. The way in which we chose the value of a, was entirely 
arbitrary. Thus it is not the values of a. that are important but only their ratios. 
It is easily verified that the values of a. in equations (27), (28), and (29) satisfy 
equation (24). 

We have thus established the theorem for M <3. For M =4 we consider unit 
4 in conjunction with units 1 and 2 and then with units 1 and 3, in each case carry- 
ing out solutions as above for M = 3. The straight line curve representing the 
priority of this fourth unit must be the same in both cases since they have two 
points in common, namely the intersection with the time axis (i.e., the time of ar- 
rival of the fourth unit) and the intersection with the priority curve of unit 1. 
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This argument can be extended to an arbitrary number of units where they are 
considered in groups of three. 

The above argument considered the worst possible case; that for which the 
largest number of restrictions were placed on the curves by the points of intersec- 
tion. If all units do not intersect each other, the results are still valid. This 
concludes the proof. 
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