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Abstract

In this paper we develop a network algebra to evaluate the
throughput-delay performance of interconnected computer net-
works. We start by developing a simplified analytical model for an
isolated computer network in which messages are flow-controlled
with a window mechanism. Using this model, we then define the
notion of equivalent nets and characterize the equivalent network
for systems composed of series and/or parallel connections of com-
puter nets.

1. Introduction

One of the most important outstanding problems in com-
puter network design is that of flow control. A flow control pro-
cedure is simply a procedure in which the flow of data across the
boundary of a computer network is throttled so as to maintain the
load on the network in an acceptable range. These controls may be
applied by using such mechanisms as: tokens, which give permission
for messages to flow; a rate at which a given flow may proceed; a
stop-and-go procedure which turns a flow on and off according to
some criteria; the introduction of delay, so as to slow down the
flow, etc. It is not hard to see why flow control procedures are
necessary in computer networks (and in many other systems of in-
terest). Indeed, modern computer networks provide the opportuni-
ty as well as the obligation to connect different speed devices to
each other through the network. It is then clear that whereas a
very slow speed teletype may be connected through the network to
an enormously high speed, large scale, expensive computer, it
could be extremely inefficient were the teletype to interrupt the
main frame of that machine every time it passed a character across
the network. On the other hand, one cannot permit the memory
channel from the large machine to pour megabytes per second at
the 30 character per second teletype. Furthermore, one does not
wish to use the network as a storage device either. Thus we see
that one purpose of a flow control procedure is to protect devices
from each other as well as the network from uncontrolled devices.
More generally, however, networks tend to exhibit what is known
as "congestion-prone" behavior [1]; this is the phenomenon where-
by the throughput will increase with the applied load up to some
optimum value, beyond which more load causes a reduction in
throughput. The flow control procedure attempts to maintain the
network load at this optimum value- a difficult control problem.

To date, little work has been done in evaluating the perfor-
mance of flow control procedures in terms of their efficiency, free-
dom from deadlocks and degradations, and general performance
profiles. These distributed dynamic control procedures tend to be
extremely difficult to analyze. Moreover, the design of such pro-
cedures is extremely difficult and one may easily fall into the trap
of designing highly inefficient and/or highly dangerous flow control
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procedures. In view of all this, the recent work in the field have
been extremely welcome [2, 3, 4, 5, 6 and the references therein].

Another very important area for computer communications
is the field of internetting [7]. We already see various computer
networks connected to each other across the world. This intercon-
nection of networks is proliferating faster than the growth of indivi-
dual national networks themselves. The development of standards
for internetting and for analytic and design procedures for such
large connected networks is in its infancy; here again, the issue of
flow control becomes important.

In this paper, we make a contribution to the field of flow
control procedures as applied to interconnected networks. Our ap-
proach is to develop a set of analytic tools which allow certain sim-
ple interconnected network configurations to be evaluated. In par-
ticular, we focus on two simple topoiogies: first, we study the case
of tandem networks in which data flows serially from network A to
network B to network C, etc., on the way to its destination; second,
we study the case of parallel connections of networks in which the
packet flow may choose one of many parallel paths in passing across
a geographical region. We represent each of the individual net-
works in an extremely simple fashion, accounting for three network
parameters: the network capacity; the number of hops in the net-
works; and the window size which controls the flow in that net-
work. In terms of these parameters, we then use simple statistical
assumptions to evaluate the delay-throughput performance of a net-
work in isolation. With this model, we then develop a simple net-
work algebra, which allows us to represent series connections of
many networks as an equivalent network in isolation whose three
parameters are functions of each of the tandem networks’ parame-
ters; this is a convenient network collapse transformation. We also
consider parallel connections of networks and here again we find
that in an important special case, the parallel set can be reduced to
a single network. The results reported here suggest that series-
parallel networks can be reduced to single networks whose proper-
ties we understand from previous studies. This is only the begin-
ning, and more interesting topological configurations must be stu-
died in order to complete the algebra.

Let us now begin with a model of a single network using
the window mechanism for flow control.

2. A Model for Flow Control With a Window Mechanism

In this section we develop a very simple analytic model for
a network in which messages are flow-controlled with a window
mechanism.

With a window mechanism, the total number of messages
in the network between a source -destination pair is restricted to a
maximum value. We model the network as in Fig. 1, in which the
traffic controller (TC) is responsible for keeping the number of
unacknowledged messages below w, the window limit. Thus we
may think of a circulating pool of w "tokens", each one of which



permits exactly one message to be sent toward the destination
node; a copy of each message is retained in the buffer space provid-
ed by the TC. When the TC receives an acknowledgement (ACK)
for a message, it discards its stored copy of the message and the to-
ken is returned back into the pool. This token may then be used to
accept a new message from the source. Thus, we allow up to w
outstanding messages between a source-destination pair. In the
destination node, messages which are received are transmitted to
the receiver and ACKs for them are sent back to the TC. We also
assume that the traffic on the path is symmetric (i.e., there is the
same flow rate of data from the receiver to the sender) and that the
ACKs are piggybacked on the messages, hence there is no extra
traffic due to ACKs. Further, we make a "heavy traffic" assump-
tion; i.e., we assume that the sender is fast compared to the net-
work so that whenever the TC can accept a new message, the
sender has one ready for transmission. With these assumptions,
the throughput is mainly determined by the network and
throughout our study we will be concerned with the maximum
throughput-delay behavior of the network within the boundaries
shown in Fig. 1. Maximum throughput is the maximum rate at
which the network can accept new messages (hence it is the upper
bound of the accepted input rate to the network). For simplicity,
when there is no ambiguity, we use "throughput" to indicate "max-
imum throughput."
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Figure 1- Structure of a Network.

The subnetwork is viewed as a source of delay and is as-
sumed to be reliable (i.e. the network channels are noiseless). To
calculate the network delay, we make the simplifying assumption
that the average network delay is modeled as an n,-hop network
with each hop modeled as an M/M/1 queue. Since the network is
assumed to be reliable, for each message sent out of the TC, an
ACK is received (with probability 1); moreover, the average ACK
delay (7,) is equal to the round-trip delay and we have T, = 2T,
where T is the average network delay (i.e., the one-way delay).
With these assumptions the average delay at each node is
1/(y — A) seconds, where X is the traffic on network channels and
y is the capacity of each network channel, both measured in
msg/sec. The average network delay is therefore
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and the ACK delay is
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When the flow is controlled by the window mechanism
described above, w messages pass through the network on the aver-
age every T, seconds; therefore, the (maximum) throughput of the
network, A, is given by

. w
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where T, is the ACK delay when the flow controlled throughput is
maximum (with window size w) and is given by Eq. (2) (when

A =)". Solving Egs. (2) and (3) for A", we get
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Using the value of A = \"in Eq. (1), we get the following expres-
sion for the (maximum) network delay when the window size is w:
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Note that when w = 0 or y = 0, there is no traffic, hence the delay
is defined to be zero.

Egs. (4) and (5) are the basic expressions in our analysis
for the maximum network throughput and delay as a function of
network channel capacity, y, the window size, w, and the number
of hops, n,. (For a more elaborate analysis of flow control the in-
terested reader is referred to [5].)

Equations (4) and (5) can be written in the following forms
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The parameter / ‘. as we shall see shortly, plays an impor-
tant role in our study; let us comment on its physical significance.
The window size w, as used in our analysis, is the average number
of messages outstanding between our given source-destination pair
in the network (note, therefore, that in our model the average
number of messages, rather than the actual number of messages, is
kept limited). There are n, hops (or nodes) on the path (hence
there are 2n; hops on a round-trip); therefore, when the network
carries a traffic determined by Eq. (6), /"= w/n, will be the aver-
age number of messages in a node, of which 172 are being
transmitted to the destination and the other half are carrying ack-
nowledgements back to the source node (recall that we have as-
sumed acknowledgements are piggybacked on messages sent from
the destination node to the source node). In queueing theory the
average number of customers in a system may be considered to be
the system load [1]; therefore, / "= w/n, is a measure of the load
(or the load factor) on a node (and /72 is the load of a channel) on
the path due to the maximum traffic from the source to the destina-
tion. Note that through the window control, the load on a node is
limited to w/n, and Eq. (6) determines the traffic which generates
this load; hence A~ is the throughput capacity of the network. If,
due to some limitations (which we discuss shortly), the throughput
(\) is less than A " given by Eq. (6), then the load on the nodes is
simply
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On the other hand if the load of the nodes is known (say /<!/ D,
then the throughput and delay of the network will be

/ 5
- —— <I/<
A T+ 2 Y for 0</</ (9)
and
|+ 2 .
T= —-27— ny 0</<! and y>0
0 1=0 or y=0 (10



In the sequel we refer to /'=w/nj, as the maximum load fac-
tor; to X" as the rraffic handling capacity; and to T as the maximum
delay of a network (when there is no ambiguity we refer to A" and
T" simply by throughput and delay). Note that the load factor (/)
is different from the utilization factor p (=A/vy) defined to be the
fraction of the channel capacity used for transmission.

Before proceeding further, we find it useful to comment on
the accuracy of the analysis in view of the simplifying assumptions
which led to Egs. (4) and (5). In the Appendix an exact analysis of
the window mechanism flow control is presented, where we find the
following exact expressions for the (maximum) throughput and de-
lay

. w I

A= = — 11

wH2m—1"" T+2-1n, o

T. W+2’l;,‘—1 I.+2—l/flh
2y 2y

w>0 (or /"™>0) and y>0

ny (12)

[ n ¥l (f-ﬁd

(a) A Network

(0, mny yil —o— 113, myy, 72

(b) Series Connection

(5, Mpy yil === [, Mhy vl

(c) Parallel Connection

Figure 2- Short Hand Notation.

These expressions seem simple enough to be used in our later
analysis; however, the term 1/n, in Egs. (11) and (12) causes the
analysis to become somewhat more complex. Considering the fact
that for n,>>1 the term 1/n, becomes negligible compared to 2,
and that Egs. (4) and (5) underestimate the performance of the
network, we take the liberty of using these simplified expressions
for the (maximum) throughput and delay of the network.

Egs. (6) and (7) show that a network (for the purpose of
studying its throughput and delay) can be totally characterized by
three parameters: y, the maximum transmission rate of the chan-
nels; n,, the number of hops along the path; and /* (=w/nj,), the
maximum load factor of nodes as defined earlier. Symbolically we
designate a network by a triple [/*, n,, y] (Fig. 2-a). In this figure
the box with a ‘w’ inside, indicates a TC with window size w in
front of a network with path length 'n," and transmission rate y
msg/sec. In what follows we seek to find an isolated equivalent
network, [/, fy,, v.l, whose behavior is the same as a system

composed of series and/or parallel connections of networks each of
which will be represented as in Fig. 2-a. The symbols '—o—' and
d " will be used to indicate series and parallel connections of
two networks, respectively (Fig. 2-b and 2-c); the equivalence rela-
tionship will be indicated by the symbol =. Throughout this paper
we assume that w>0 and y>0. We begin by defining equivalent
networks.

Definition
Two networks are said to be equivalent if the traffic han-
dling capacity and the maximum delay of both are identical.

3. Series Connections of Networks

Consider Fig. 2-b in which two networks are connected to-
gether in series (the connecting node A is usually referred to as the
GATEWAY (7]). Messages from source S, connected to network
1, are to be transmitted to destination D, connected to network 2.
We assume that the operation of the two networks are independent
of each other. That is, when a message from network 1 is
delivered to network 2 (via the GATEWAY), the ACK for this
message is sent back to the TC of network 1; a copy of this mes-
sage is kept by the TC of the second network until the ACK is re-
ceived from the destination node. The only interaction between
the two networks arises from their throughput handling limitations.
We start with the analysis of two networks connected in series and
then generalize the results for the case of more than two nets.

Consider two networks connected to each other in series;
the traffic handling capacity and the maximum delay of each net-
work are given by Egs. (6) and (7). Depending if A, =Aj,
A2 > A, or A; < A, we consider three cases.

Case I: \y = \|

When the traffic handling capacity of the two networks are equal,
we have
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Solving the above equation for /, i=1, 2, we find that the max-
imum load factors of the two networks are related to each other as
follows:
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The throughput of the system is therefore
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The maximum system delay is the sum of the delays in the two
networks, i.e.,
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Comparing Egs. (13) and (14) with Egs. (6) and (7), for A{ = X5
we have
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and the equivalent window size will be
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In Egs. (15-a) to (15-d) i can be either 1 or 2.

Case II: .y > \|
In this case network 1 is the bottleneck; hence we have

Ne=Al= T[‘:f i (16)
When network 2 carries a traffic equal to Ay, the load at its nodes
becomes (Eq. (8))
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and it is easy to demonstrate that X, > A, is equivalent to

h>1 18)
For a load of /, the delay at network 2 becomes (Eq. (10))
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The total system delay is the sum delays in the two networks

T =T+ T

Using the value of T, from Eq. (19) and substituting the value of
[, from Eq. (17), after some algebra we get
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Comparing Eq. (16) with (6), and (20) with (7), we have: if
A2 > A, then
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and the equivalent window size will be
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Case III: Ay < \{

In this case network 2 is the bottleneck for the throughput. The
analysis is similar to case II; indices 1 and 2 should simply be re-
placed with each other.

In general, when several networks are connected together
in series, the bottleneck for the throughput is the network with the
smallest traffic handling capacity, and we have
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size, the throughput and the delay will be, respectively,
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In the special case when y, =y, i=1, .., N, the network
with the lowest throughput handling capacity is the same one with
the lowest load factor, i.e.

[~ = min {/} (23)
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where i’ is defined in Eq. (21). That is, the network with the
lowest (maximum) load factor is the bottleneck. It can be shown
that in this case the actual load factors of all the networks are equal
to /,, the maximum load factor of the bottleneck net, and we have

(s
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Furthermore, the equivalent network has a path length equal to the
sum of the path lengths of the component nets, and the equivalent
transmission rate is y, = y. The throughput and the delay of the
equivalent network for this special case are shown in Table 1.

4. Parallel Connections of Networks

As in the analysis of series connections, we assume that the
operation of each of the parallel-connected networks is independent
of the others. Parallel connections is similar to the case where a
user has a number of networks (or a number of different, indepen-
dent paths on the same network) at his disposal to send his mes-
sages to the receiver. Note that we assume the networks do not
share common windows.

Unless the maximum load factors of the networks are
equal, the analysis becomes complicated and no simple expression
for the equivalent network has been derived; therefore, in what fol-
lows we will assume /= /" for all i



Table 1— A Network Algebra (y,>0 and w;>0).

Consider N networks connected together in parallel. When
each network carries its maximum traffic, the total traffic carried by
the system becomes the sum of the traffic handling capacities of
each network, hence we have
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L the channel transmission rate is the sum of the transmission rates
: of the networks, and the equivalent number of hops is also the sum
Ae =X of the number of hops in each network.
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The traffic handling capacity and the delay of the equivalent net-
work can be found by using Egs. (25) and (26).

Table 1 shows a summary of our results for the series
and/or parallel connections of networks when w;>0 and y,>0. For
the series connections the network with the lowest maximum traffic
handling capacity is the bottleneck of the system. In the special
case that the channel transmission rates of all networks are identi-
cal, the number of hops of the equivalent network becomes the
same as the sum of the number of hops of the networks. For the



parallel connections we have shown only the results for the special
case that the maximum load factors of all the networks are identi-
cal; the results for the general case do not allow a simple
equivalence to be found.

5. Conclusion

In this paper we characterized systems composed of series
and/or parallel connections of computer networks and developed a
network algebra as an aid in the systematic study of internetting.
For series connections of networks we found an isolated equivalent
network with the same behavior. It was observed that the
throughput of this system is determined by a bottleneck net, the
network with the smallest traffic handling capacity. Eqgs. (18) and
(24) show that the load factor of each of the connected nets is less
than their maximum load factor (i.e../; < 1). Considering the fact
that the load factor is equal to the average number of messages in
the nodes of a net (Section 2), we have

n = nyl; < "h,li.“ Wi (0X))

(n, is the average number of messages in network ). Therefore,
the average number of message is less than (or equal to, in the
bottleneck net) the window size. Because the window size w; deter-
mines the amount of buffer storage used in network i, Eq. (27)
shows that part of the resources of the network are wasted.

The analysis of networks connected in parallel was carried
out only for the special case when the maximum load factors of the
connected networks are identical. We showed that a system com-
posed of parallel connections of such networks is identical to a sin-
gle network with a path length and transmission rate equal to sum
of the path lengths and sum of the transmission rates of its com-
ponents, and its maximum load factor is equal to the maximum
load factor of each component network.

Clearly, any connection of series/parallel networks can be
reduced to a single equivalent network, using the methods given in
this paper.

Appendix

In this appendix we analyze a cyclic queue model of the
window mechanism described in Section 2.

We model the communication path between a source S and
destination D by nj, tandem queues. For each message that arrives
at the destination node, an ACK is generated and piggybacked on
the messages that are being transmitted from the destination node
D to the source node S. Similar to Section 2, we assume that traffic
between nodes S and D is symmetric and we model the reverse
path from node D to node S as another set of tandem queues. Be-
cause the total number of unacknowledged messages is restricted to
the window size w, under heavy traffic conditions there are exactly
w messages on the paths, of which, on the average, w/2 are being
transmitted to D and the other w/2 are carrying ACKs to node S.
This model is shown in Fig. A.l, where each channel (hop) is
represented by a single server queue with service rate y. Assuming
the service time is exponentially distributed, the model can easily
be solved for the statistics of interest [8]. In particular, the proba-

bility that any one of the queues is empty can be found to be
2’!}, -1

Pp= ———

7w+ 2n,— 1

The throughput of each queue is therefore (1—Pg)y. This quantity
is also equal to the throughput of the network under heavy traffic
conditions. Using the notation of Section 2, we have

Y --c' e-e Y -l||
ny 1
1 Ny
S D
lIl‘ Y e 0 —.-I['- Y b

Figure A.1- A Closed Network of Queues Model
for the Window Mechanism

2”;,—1 w
w+2n,—-1 Y w + 2n,
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By using the Little’s Result [9], we can easily find the (maximum)

network delay 7' to be

I = w+2n,—1
2y
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