AL

A NEW ALGORITHM FOR NETWORK RELIABILITY COMPUTATION

A. Grnarov', L. Kleinrock' and M. Gerla't

tElectrical Engineering Department
University of Skopje, Yugoslavia

1. Introduction

The analysis of reliability networks has been the sub-
ject of considerable research. The terminal reliability algo-
rithms available in the literature are based on state enumera-
tion,”™* factoring,’ reduction to series-parallel network,%’
path enumeration,®" % cut-set enumeration,? 22 and case
analysis®. Recently Satyanarayana and Prabhakar?* proposed
an efficient algorithm based on the acyclic subgraphs of the
given probabilistic graph.

The most efficent path enumeration algorithms use
reduction to mutually exclusive events by Boolean algebra.
The drawbacks of these algorithms, however, are the fact
that they generate a large number of terms, %20 they can
efficiently handle systems of only moderate size (say, fewer
than 20 paths or cut-sets between the input-output node
pair),!! and they do not permit an efficient determination of
the resulting function when the number of elements in the
network is large.®

In this paper a new algorithm for terminal reliability
computation of a general network is presented. The algo-
rithm belongs to the path enumeration algorithms (which use
Boolean algebra) and is based on performing the here
defined $-operation (modified #-operation)?® on the set of all
simple paths. A simple path is represented by a particular
binary string (path identifier); thus,only logical operations
need to be performed. The proposed algorithm is more
efficient than existing algorithms since it does not suffer
from the previously mentioned drawbacks. It can be applied
to both oriented and non-oriented networks and easily
modified to produce symbolic expression for terminal relia-
bility.

The algorithm was coded in FORTRAN IV and run
on a DEC-10 timesharing computer system. Execution times
confirm the advantages of the proposed algorithm over exist-
ing algorithms.

II. Derivation of the Algorithm

For a network consisting of N nodes and E links, we
consider the set of paths between a given source s and a
given destination t. Each path in the set is identified by a
path identifier defined as follows:

*This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense
under contract MDA 903-77-0272.

Reprinted from PROCEEDINGS OF COMPUTER
NETWORKING SYMPOSIUM, December 1979

17

#UCLA Computer Science Department
Los Angeles, California 90024

Definition 1: The path identifier /P, for the path m is defined
as a string of n binary variables

[Pk=X]X2"'X,"'X”
where
x =1 if the i element of the network
(node or link) is included in the
path
X; =X otherwise

1
and n = number of network elements that can fail, i.e..

n=N in the case of perfect links
and imperfect nodes

n=E in the case of perfect nodes
and imperfect links

n =N+ E in the case of imperfect links

and imperfect nodes

According to Definition 1, it can be seen that a path
identifier has the form of the cube in Boolean algebra.
Hence, by applying the #-operation ("sharp" operation)
between two path identifiers, denoted by IP, # IP;, we ob-
tain the set of all subcubes (events) of /P not included in
IP;. Unfortunately, the generated subcubes are not mutually
disjoint. The #-operation should be repeated on the set of
subcubes again and again until a set of disjoint subcubes is
obtained.

In the case when the paths 7, j = 1,2, =-a;m=1,
have been examined, the determination of the set of sub-
cubes of the path ,,, which are not included in the previous
paths, can be performed as

S, = (..((UP,#IP)#IPY# .. #IP)# . J#IP, 1 ()

Since the #-operation is performed using the largest possible
cubes (path identifiers), the generation of S, is faster than
with Fratta’s!® and Rai’s'® methods, and also there is no
need for the storing of the new terms. The drawbacks of
performing (1) are the generation of the repeated subcubes
and the need for the repeated application of the #-operation
between the subcubes in S,. To avoid these drawbacks a
new $-operation, called vexclusive sharp" operation, will be
introduced later in Definition 4.

Before the presentation of Definition 4 it is useful to
make the following consideration. Since the path identifiers
contain only symbols 1 and X, the #-operation by definition
(see Table 1 below) can produce only 0 as a new symbol.

CH1467-0/79/0000-0017$00.75 © 1979 IEEE

The symbols 0 generated in step j are designated as (/. If in
the cube generated by #-operation there is only one (, we
call this a unique 0. Now we quote the definition of the
coordinale #-operation between two cubes as given in Mill-
er?S (page 173), and we also present the definitions of the
@ ;-operation and the $-operation.

Definition 2. The coordinate #-operation is defined as given
in Table 1.

Table 1
|
y z
- Z
0 =z

Definition 3. The @ -operation between two cubes, say
C'=aay - -a ---a, and C'=byby---b b, s
defined as

C if a,#b, =y for any unique 0 or
@ C= if a#b, =y forall a,=0"forany v
Ch # CU Ch otherwise
where
' is a cube obtained from C’ by setting to 1 all
a, = O/, for which a,#b, = y,
and

Cj is a cube obtained from C’ by setting to x all
a, = O, for which a,#b#y.

Definition 4. The $-operation between two cubes C” and ¢*
is defined as
o ifa#b
Cr 8 C*={S, if a#b
C' otherwise

z for all i

y forany i

where @ is the empty set, S, =S,_, @, C*, §;=C" @, C*

and j = 2,3, - - - k (k is the number of steps in which any
symbol(s) 0 is generated) while C'=cyc; -+ ¢, -+ ¢, and
¢, = a,ith,.

According to Definition 4 it follows that if we substi-
tute the #-operation in (1) by the $-operation, the set S,
consisting of disjoint cubes only, will be generated. The pro-
bability of the event, corresponding to a cube C in S, can
be calculated as

k
P(C)=PQI] O -P) (2)
j=2
where
P =11 p, for all /i satisfying ¢; = 1
Q =1Ilg for all i satisfying ¢, = unique 0
P,=TIp, for all i satisfying ¢; = 0/

ql=1—pi

and p, is the probability that the i element is up.

Now we can propose the algorithm PROB for terminal
reliability computation:

ALGORITHM PROB:

step 1. Find path identifiers for all simple paths
between node s and node t

step 2. Sort them by increasing weight (where
weight = number of 1’s in the path
identifier string)

step 3. Set P, = P(IP))

For m = 2,3, - - - ,k determine
Sm =((([Pm $ [Pl)$IP2 B)$[P/n—l
P.x/ =P, + P(Sm)

step 4. (loop)

step S. END

In the algorithm, P(S,,) is the sum of the probabili-
ties of all subcubes in S,,.

As an example, the PROB algorithm is applied to the
simple bridge network given in Figure 1. (Figure 2 in Lin'!
and Figure 1 in Fratta'®)

Figure 1. A Bridge Network

steps 1,2. Table 2 presents the set of all simple paths and
their path identifiers (for simplicity we consider the
case with perfect nodes and imperfect links).

Table 2
m Tr’” IPI"
1| x1x; 11xxx
2 || x3xq4 xx11x
3|l xyxsxq | Ixx11
4 | x3xsxp | x1lxI
step 3. P, = [p1p,]
stepd. m=2:
xx11x
11xxx
S, = 0011x j=1

P, = Py+lp3ps(1=ppy)]

[
A

10x11 unique 0, j =

I
(S

unique 0, Jj

]
|

= Py+[p1papsd24sl

x11x1
11xxX
011x1 unique 0, j =1
xx11x
01101 unique 0, j = 2
1xx11

S,= 01101

P, = Py+[pyp3psd194)
step 5. END

In the example [x] is used to denote the numerical
value of x.

Since the proposed algorithm does not produce can-
celling terms, the obtained result for Py requires computa-
tion of 4 terms in comparison with 5 terms in Lin'! and 6
terms in Fratta'®.

As a second example, for the network shown in Fig-
ure 2 (Figure 1 in Rai'®, Figure 10 in Lin!! and Figure 3 in
Satyanarayana’®) the reliability Py, is obtained by computing
16 terms. The results in Rai'®, Lin'! and Satyanarayana®® re-
quire computation of 22, 61 and 123 terms respectively.

Figure 2. Modified Graph of ARPA Network
The third example, given in Figure 3, was also used
in Fratta!®, Abraham? and Aggarwal®.

Figure 3. Example Network

The reliability evaluation requires the computation of 38 in-
termediate terms, while there are 72 terms in Abraham®.
Furthermore, the algorithm PROB requires 34 comparisons
for the determination of 833 while the algorithms reported in
Abraham?®® and Aggarwal!” require 54 and 173 comparisons
respectively. For finding S,4, these numbers are 26, 45 and
159 respectively.

The algorithm was coded in FORTRAN IV and run
on a DEC-10 computer system. The execution of algorithm
PROB for a 9 node, 13 link example (given in Figure 7 in
Lin'") took 0.76 seconds. The same example required 71
seconds execution time on a faster machine (namely, a CDC
6500) using the algorithm reported in Lin!'. For the exam-
ples given in Figures 10 and 11 in Fratta? the computing
times with PROB were 0.88 and 1.41 seconds. The execution
of the algorithm in Fratta?>, which was coded in ALGOL W
on an IBM 360/67 computer, took 4 and 15 seconds respec-
tively.

I1I. Concluding Remarks

The paper presents a new algorithm for network ter-
minal reliability. The proposed algorithm is based on the im-
plementation of the introduced $-operation on the set of the
path identifiers only. By application of the $-operation, only
the disjoint subcubes are generated. The probability of the
corresponding event can be calculated in a straightforward
manner. The algorithm is efficient since it does not generate
a large number of terms, and there is no need for the gen-
eration and storage of new terms other than the path
identifiers. Since determination of the set S, is easy, the al-
gorithm can efficiently handle medium size networks. It can
be applied to both oriented and non-oriented networks and
can be easily modified to produce symbolic expressions for
terminal reliability.

The comparison with existing algorithms on the basis
of the number of terms, the number of operations and pro-
gram execution time confirms the superiority of the proposed
algorithm over path enumeration algorithms as well as algo-
rithms employing other techniques.

REFERENCES
[1] M. L. Shooman, Probabilistic Reliability, An En-
gineering Approach, New York: McGraw-Hill,
1968.
[2] F. Henley, R. Williams, Graph Theory in Modern

Engineering, New York: Academic Press, 1973.

[3] 0. Wing, P. Demetriou, "Analysis of probabilistic
networks," IEEE Transactions on Communication
Technology, vol. COM-12, September 1970, p. 38-
40.

[4] S. Arnborg, "Reduced state enumeration - Anoth-
er algorithm for reliability evaluation," IEEE Tran-
sactions on Communications, vol 27, no. 2, June
1978, pp. 101-105.

(5]

[6]

(7]

(8]

(101

[111]

[12]

[13]

[14]

[15]

F. Moshowitz, "The analysis of redundancy net-
works." AIEE Trans. Commun. Electr., vol. 77, No-
vember 1958, pp. 627-632.

Y. Kim, K. Case and P. Ghare, "A method for
computing complex system reliability," [EEE
Trans. Reliability, vol. R-21, mno. 4, November
1972, pp. 215-219.

K. Misra, "An algorithm for the reliability evalua-
tion of redundant networks," IEEE Trans. Reliabil-
iy, vol. R-19, November 1970, pp. 146-151.

C. Lee. "Analysis of switching networks," Bell Sys-
tem Tech. J., November 1955, pp. 1287-1315.

D. Brown, "A computerized algorithm for deter-
mining the reliability of redundant
configurations," /EEE Trans. Reliability, vol. R-20,
March 1971, pp. 121-124.

L. Fratta, U. Montanari, "A Boolean algebra
method for computing the terminal reliability in a
communication network," JEEE Trans. Circuit
Theory, vol. CT-20, May 1973, pp. 203-211.

P. Lin. B. Leon, and T. Huang, "A new algorithm
for symbolic system reliability analysis,” |EEE
Trans. Reliability, vol. R-25, no. 1, April 1976, pp.
2-14.

L. Fratta, U. Montanari, "Synthesis of available
networks," 1EEE Trans. Reliability, vol. R-25, no.
2. June 1976, pp. 81-87.

J. de Mercado, N. Spyratos and B. Bowen, "A
method for calculation of network reliability,"
IEEE Trans. Reliability, vol. R-25, no. 2, June
1976, pp. 71-76.

P. Canarda, F. Corsi and A. Trentadue, "An
efficient simple algorithm for fault free automatic
synthesis from the reliability graph," /EEE Trans.
Reliability, vol. R-27, no. 3, August 1978, pp.
215-221.

S. Rai and K. Aggarwal, "An efficient method for
reliability evaluation of a general network," IEEE

20

(16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Trans. Reliability, vol. R-27, no. 3, August 1978,
pp. 206-211.

T. Case, "A reduction technique for obtaining a
simplified reliability expression,” [EEE Trans. Reli-
ability, vol. R-26, no. 4, October 1977, pp. 248-
249,

H. Nakazawa, "A decomposition method for com-
puting system reliability by a Boolean expression,”
IEEE Trans. Reliability, vol. R-26, no. 4, October
1977, pp. 250-252.

K. Aggarwal, J. Gupta and K. Misra, "A simple
method for reliability evaluation of a communica-
tion system," [EEE Trans. Communications, vol.
COM-23, No. 5, May 1975, pp. 563-566.

K. Aggarwal, K. Misra and J. Gupta, "A fast algo-
rithm for reliability evaluation," [EEE Trans. Reli-
ability, vol. R-24, April 19675, pp. 83-85.

J. Abraham, "An improved algorithm for network
reliability,” IEEE Trans. Reliability, vol. R-28, no.
1, April 1979, pp. 58-61.

P. Jensen and M. Bellmore, "An algorithm to
determine the reliability of a complex system,"
JEEE Trans. Reliability, vol. R-18, November
1969, pp. 169-174.

E. Hansler. G. McAulife and R. Wilkov, "Exact
calculation of computer network terminal reliabili-
ty," Networks, vol. 4, 1974, pp. 95-112.

L. Fratta and U. Montanari, "A recursive method
based on case analysis for computing network ter-
minal reliability," [EEE Trans. Communications,
vol. COM-26, no. 8, August 1978, pp. 1166-1177.

A. Satyanarayana and A. Prabhakar, "New topo-
logical formula and rapid algorithm for reliability
analysis of complex networks." /EEE Trans. Relia-
bility, vol. R-27, no. 2, June 1978, pp. 82-100.

R. Miller, Switching Theory, Volume [: Combina-
rional Circuits, New York, Wiley, 1965.

