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ABSTRACT

A new algorithm for symbolic network analysis is presented. The algorithm is based on the ap-
plication of a newly defined $-operation on the set of all simple paths.

Comparisons with existing algorithms on the basis of terms that must be evaluated during the
derivation, the number of operations required, and the execution time in several represented bench-
marks show that the proposed algorithm is considerably more efficient than currently available solu-
tions,

I. INTRODUCTION

The symbolic analysis of reliabiiity networks has been the subject of considerable research. The
symbolic terminal reliability algorithms available in the Jiterature are based on path enumeration (1-13},
cut-set enumeration [4.8) and on the acyclic subgraphs of the given probabilisuc graph [14).

The most efficient path enumeration algorithms use reduction to mutually exclusive events by
Boolean algebra. However, common drawbacks of these algorithms are that they generate a large
number of terms (3, 13); that they cannot efficiently handle systems of medium to large size (i.e., sys-
tem graphs having more than 20 paths between input-output node pairs) [4); and that they cannot easi-
ly determine the resulting symbolic function when the number of elements in the network is large (8).
The same drawbacks affect the algorithms based on the cut-set enumeration (4).

A more efficient algorithm based on the acyclic subgraphs of the given probabilistic graph was
recently proposed by Satyanarayana and Prabhakar (!4]. The examples indicate that this algorithm is
appreciable faster than existing methods and can handle Jarger networks.’

In this paper a new algorithm for the symbolic terminal reliability computation is presented.
The algorithm belongs to the class of path enumeration algorithms (which use Boolean algebra) [t is
based on the application of a ncwly defined $-operation on the set of all simple paths. A simple path is
represented by a binary string (path identifier); thus only logical operations are required. The aigorithm
does not suffer from the drawbacks of path or cut-set enumeration algorithms.

v

"This research was supported in part by the Advanced Research Projects Agency of the Department of
Defense under contract MDA 903-77-0272 and in part by the Office of Naval Research under contract
N00014-79-C-0866. :

“Dr Grnarov is currently on leave from the Electrical Engineering Departient, University of Skopje.
Yugoslavia.

1A-11

29




The algorithm was coded in FORTRAN IV and run on a DEC-10 timesharing computer system.
Execution times confirm the advantages of the proposed algorithm over existing path and cut-set
enumeration algorithms. The execution times are considerably shorier than the times shown for-the
network examples in [14] (these results, of course, provide only a qualitative comparison of computa-
tional efficiency since the programs were run on different computers).

II. DERIVATION OF THE ALGORITHM

For a network consisting of N nodes and E links. the path identifier is introduced by the follow-
ing:

Definition 1: The path identifier /P, for the path , is defined as a string of n binary variables
IPy= X)Xy X" X,

where
x, =1 if the i element of the network (node or link) is included in 1he

path 7,

X, =X otherwise

and n = number of network elements that can fail, i.e.:
n=N in the case of perfect links and imperfect nodes
n=E in the case of perfect nodes and imperfect links
n =N+ E inthe case of imperfect links and imperfect nodes

As an example let us consider a 4 node. S link network. given in Figure 1, in which nodes are

perfecily reliable and links are subject to failures. The path (5,x),a,xs5,b,x4.1) 15 then represented by the
string: IP = 1xx1l.

Figure I, Path Ikdentifier String

According 10 Definition 1, it can be seen that a path identifier has the form of the cube in
Boolean algebra. Hence. by applying the #-operation ("sharp” operation) ([15), page 173) between two
path identifiers. denoted by /P # IP,. we obtain all subcubes (events) of /P, not included in /P,
Unfortunately. the generated subcubes are not mutually disjoint. The #-operation should be repeated
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Since the proposed algorithm SYMB does not produce cancelling terms. the obtained result for
the example given in Figure 1, has four terms in comparison with [4land [3] which have five and six
terms respectively.

For the second example of a network. shown in Figure 2 {also Figures 1, 10 and 3 in [8). [4]
and (14) respectively), we obtain a reliability expression which has 16 terms. The results in [8)a and
[4] have 22 and 61 terms respectively, and the symbolic expression in {14] upon expansion yields 123
terms.

Figure 2. Modified Graph of ARPA Network

The third example, given in Figurs 3, was also used in [3], [13] and [12]. The reliability ex-
pression has 38 terms while the result in [13] has 72 terms. For the determination of S23 The algo-
rithm SYMB requires 34 comparisons while the algorithms reporied in [13] and {12] require 54 and 173
comparisons respectively For finding $, these values are 26, 45 and 159 respectively.

Figure 3. Example Network

A program based on the proposed algorithm was written in FORTRAN IV and run on a DEC-
10 timesharing computer system. The program was applied 15 a number of network exaruples found in
the literature. The execution times for examples given in Figures 2 through 6 are presented in Table 3
and are compared with the execution times of some of the existing algorithms. The results confirm the
efficiency of the proposed algorithm.
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on the set of subcubes again and again until a set of disjoint subcubes is chtained.

In the case when the paths 7, j = 1,2, - - - ,m~1, have been examined, the determination of
the set of subcubes S, of the path ,, which are not included in the previous paths, can be performed
as

Sy = C.(UP#IP)#IP)# .. #IP)# . )#IPy- (1

Since the #-operation is performed using the largest possible cubes (path identifiers), the generation of
S,, is faster as compared with [3} and [8]; &lso there is no nezd for storing the new terms. The drawe
backs of operation (1) are the generation of the repeated subcubes and the need for the repeated applie
cation of the #-operation between the subcubes in S,,. To avoid these drawbacks, a new $-operation is
introduced in Definition 4 below.

Beiore the presentation of Definition 4 it is useful to make the following consideration. Since
the path identifiers contain only symbols 1 and x, the #+operation can produce as a new symbol, only 0.
The 0's generated in step J are designated as 0/. If in the cube generated by #-operation there is only
one 0/, we call this a unique 0. Next we quote the definition of the coordinate #-operation from {15]
(the definition of #-operation between two cubes is given in [15] on page 173) and ws introduce the
definitions of the @,-operation and the $-operation.

Definition 2. The coordinate #-operation is defined as given in Tabie 1.

Table |

b |0
N a'
0 z Yy 1
| y 2z 2z
X 1 0

Definiion 3. The @ operation between (two cubes, say C‘=aa---¢g, " -a, and
Cém byby-- - 8, -+ by, i defined as

c’ if a,#b, = y for any unique 0 or
e, (= if a,#b, =y for all a, = 0" for any v
Ci# CJCH otherwise

where
Cf is a cute obtained from C’ substituting all a, = 0/, for which a,#b, = », by 1.
and ‘

C} is a cube obtained from C' substituting all a, = ¢/, for whickh a,#b=y. by x.

Definition 4. The $-operation between two cubes C'and C*is defined as

¢ ifa#b =2z foralli
C'8 Cs={S, if ai#tb =y foranyi
C' otherwise

32



where ® is the empty set, §; =S, @, C*, §;=C'@,C*and j=2,3, - -+ k (k is the number of
steps in which any symbol(s) O is generated), C'= ¢yc3- - - ¢, " - cpand ¢, = a,ith,.

According to Definition 4 it follows that if we substitute the #-operation in (1) by the $-
operation, the resulting set S, will consist of disjoint cubes only. The symbolic expression, correspond-
ing to a cube C in §,,, is given by

k
TWC)=PQ[] QA-P)
1=

P=1p, forall  satisfying c, = 1
Q=Mg, forall i satisfying c, = unique 0
Py=Tip, forall i satisfying c, = o/
[ is syrabol representing probability that the ‘*zlement is up
g=1-p
and Il and - are the product and concatenation operators in the siring algebra.

We can now introduce the algorithm SYMB for the derivation of symbolic expressior. for termi-
nal reliability:

ALGORITHM SYMB:
step L. Find path identifiers for all simple paths between node s and node t

step <. Sort them according 10 increasing number of symbols 1 (ie., increasing path
length).

step 3. Set Ty = TGP

step 4. (loop) For m = 2,3, - - - ,k determine
Sy = (- (P, $ IPYSIPy- - - )$IPpy
Form T e T(C)) . i= 1,2, - 1

step 5. END

In the algorithm, C., is a cube in the set S,, and /is the number of cubes in Sp.

As an example, the SYMB algorithm is applied to the simple bridge network given in Figure 1.
(This same example was used in [3land [4].) '

steps 1,2. Table 2 presents the set of all simple paths and their path identifiers (for simplicity we consid-
er the case with perfect nodes and imperfect links).




Ty=pin
me 2.

xxllix

llxxx
S; « 00llx

Ty = paps(l = p1p2)
m=3:
Ixxll
11xxx
Ox1 unique 0. j = |
xil
S;= 10011 unique 0, j = 2

T3 = P1PaPsq293

m=4:

unique 0, j = 1
unique 0, j = 2
Sem
Ta1 = p2p3Psd194
step 5. END

The symbolic expression for terminal reliabitity is
Ty = p1pa + PPl = pipa) + p1papsaaqs + P2P3P59144

II. COMPUTATIONAL RESULTS

Two common criterie for the evaluation of symbolic reliability algorithms are: {1) the number
of terms in the reliability expression; and (2) the number of comparisons of an intermediate product
term with the term represented by a simple path [13].




Figure 6. Network Example Which Allows for Both Nodes and Links Failures
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Table 3

Algorithm Computer System/language || Fig. 2 Fig.4 | Fig. §
Fratta, Montanari 1BM 360/67 >

(3] FORTRAN 10 min.

Lin, Leon, Huang CDC 6500 9s. 75 s.

(4 FORTRAN )

Abraham DEC-10 i 19s.
(13] SAIL

Satyanarayana, PDP 11/45

Prabhakar (14} FORTRAN

SYMB DEC-10
FORTRAN

1V. CONCLUDING REMARKS

The paper presents a new algorithm for symbolic network analysis. The proposed algorithm is
based on the implementation of a newly defined $-operation on the set of path identifiers. Applying the
$-operations. only the disjoint subcubes are generated and therefore the reliability expression can be ob-
tsined in a straightforward manner. The algorithm is efficient since it does not generate a large number
of terms and does not require the generation and storage of intermediate terms beside the path

identifiers.

The comparisons with the existing algorithms in the number of terms, number of comparisons
and execution times of the realized program confirm the efficiency of the proposed algorithm.

Due to the improved computational efficiency, the SYMB algorithm permits us to analyze and
derive symbolic reliability expressions for networks of considerably larger size than was possible using
the previous technidues.
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