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ABSTRACT

This paper analyzes a queueing structure for a time-shared serv-
ice facility (or processor) and compares these results with a straight-
forward first-come first-served discipline. The assumption is that the
processing time for each job is chosen from a geometric distribution.
This time-shared discipline shares the desirable features of a first-
come first-served principle, as well as that of a discipline which serv-
ices short jobs first. It is shown that those jobs with shorter than
average processing requirements, spend less time in the queue than
they would in a strict first-come first-served system, and conversely
for longer than average jobs.

INTRODUCTION

Recently a great deal of interest has been expressed in various forms of time-shared
computing systems. The motivation for such interest is directed primarily toward encouraging
the interaction between the user (programmer) and the computer itself. Specifically the hope
is that time-shared systems will economize (in some sense) the user's time and will encourage
the formulation of new problems for computer solution; it should be noted that no claims can
be made that a system of time-sharing will improve the efficiency in use of the central com-
puter itself (except insofar as more efficient programs may emerge from such a system).

This article considers a simple ''round-robin" time-shared service facility and com-
pares its behavior with that of a strict first-come first-served system. The model of the
round robin system is set up so as to include the advantages of a first-come first-served sys-
tem, as well as those of a discipline which services short computational jobs first.

THE MODEL

Let time be quantized into segments each Q seconds in length. At the end of each time
interval, a new unit (or job) arrives in the system with probability AQ (result of a Bernoulli
trial); thus, the average number of arrivals per second is A. The service time (i.e., the re-
quired processing time) of a newly arriving unit is chosen independently from a geometric
distribution such that for ¢ < 1

(1) sn=(1-<7)o'n'1 0= 02800

*This material is to appear in a forthcoming book in the Lincoln Laboratory Publication Series
entitled, Message Delay in Communication Nets with Storage, by Leonard Kleinrock (McGraw-
Hill Book Co. Inc., New York).

tThis work was done while the author was employed at Lincoln Laboratory (Operated with sup-
port from the U.S. Army, Navy, and Air Force), Massachusetts Institute of Technology,
Lexington, Massachusetts.
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where SL is the probability that a unit's service time is exactly n time intervals long (i.e.,
that its service time is nQ seconds).

The procedure for servicing is as follows: a newly arriving unit joins the end of the
queue, and waits in line in a first-come first-served fashion until it finally arrives at the serv-
ice facility. The server picks the next unit in the queue, and performs one unit of service upon
it (i.e., it services this job for exactly Q seconds). At the end of this time interval, the unit
leaves the system if its service (processing) is finished; if not, it joins the end of the queue
with its service partially completed, as shown in Figure 1. Obviously, a unit whose processing

requirement is n time units long will be forced
to join the queue n times in all before its serv-
po ice is completed.

Another assumption must now be made
regarding the order in which events take place
at the end of a time interval. We consider two

AQ QUEUE pll-o) types of systems: The first system allows the
SERVICE unit in service to be ejected from the service
e facility (and then allows it to join the end of the
Figure 1 - The round-robin time- queue, if more service is required for this
shared service system unit), and instantaneously after that a new unit
arrives (with probability AQ). We call this a
late arrival system. The second system
reverses the order in which these events are allowed to occur, giving rise to the early
arrival system. In both systems, a new unit is taken into service at the beginning of a

time interval.

RESULTS

First we consider the late arrival system, which is similar to a system considered by
Jackson [2] for a different class of priority systems. He arrives at the solution for the steady
state probability, s that there are k units in the system just before the time when an arrival
is allowed to occur (i.e., just after the time when a unit is ejected from service if there was a
unit in service); Jackson's result is

(2) r, = (1-2) ak :
where
a = _L(.I_._
1-2Q
and
p= 22
1-o0

This definition of p is the product of the average arrival rate A and the mean service time,
Q/(1 - 0); in queueing theory, p is referred to as the utilization factor and, as we shall see
below, plays a crucial role in determining queue lengths, waiting times, and so on. The notation
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of Jackson's result has been altered to correspond to that used in this article. From this we
quickly obtain the expected value, E, of the number k as*

(3) g

These results also apply to the time-shared service facility under consideration. For the
time-shared system, we now state the theorem:

THEOREM 1:* The expected value, Tn , of the total timeT spent in the late arrival
system for a job whose service time is nQ seconds, is

(@) T - nQ AQZ " (l-ooz)(l-ozn'l)

T kep Clep (1-0)2(1-p)

where

o =0+ 2AQ.

In the appendix we show that @ < 1. An upper bound for Tn is easily obtained (by lower bound-
ing the bracket above, by unity) as

(5) T = l‘fp(n-xQ).

We now consider the early arrival system. Let re be the steady-state probability that
there are k units in the system just after the time when an arrival is allowed to occur (i.e.,
just before the time when a unit is ejected from service if there is a unit in service). In the
appendix we show that

r1-p k=0

(6) rk = J

where a and p are defined just as in the late arrival system. From this we obtain E', the
expected value of the number k, as

(1) B e s P Lo, gealo
1-p

*See the appendix for proof of Eq. (3) and of Theorem 1,
T , is the sum of the time spent in the queue and the time spent in the service facility,
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THEOREM 2:* The expected value, Tn , of the total time spent in the early arrival
system for a unit whose service time is nQ seconds is

() T < nQ _pQ_szp 1+(1-0()1)(1-0}1-1) ,

5, ER =P (1-0)%(1-p)

where « is defined as before. An upper bound for Tn is easily obtained (by lower bounding
the bracket above the unity) as

. Q
9) T, = U e n-2Qp) - pQ.

We now consider the case in which all units wait for service in order of arrival, and
once in service, each unit remains until it is completely serviced. It is then easy to show that
with Tn defined as before, we get Theorem 3.

THEOREM 3:* The expected value, Tn , of the total time spent in the strict first-come
first-serve system for a unit whose service time is nQ seconds is

QE

+ nQ,
Temp

(10) T, =

where, once again,

Note that the distinction between the early and late arrival systems has disappeared, as, of
course, it must. Note also that the expression defining E is the same as that in Eq. (3) which
is the average number of units in the late arrival system.

Let us now compare some of these results for time-shared systems. First, we com-
pare the value of E and E'. Let A be the difference between the expected number of units in

the early and late arrival systems. Then

p p
A B (4~ !
l-p( b= e

and so

(11) A= p(l-0) = \Q.

This result is quite reasonable, since for ¢ equal to zero (which says that each service time
equals one time interval exactly) the difference A should be the probability of finding a unit in

*See the appendix for proof of theorems.
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the early arrival system (which is merely p);* and for o approaching unity, the difference ap-
proaches zero since, with probability 1 - ¢ a unit will leave the system before (after) the next
arrival. Note that A is always less than unity.

Now, if one wishes an approximate solution to the round-robin system, one might argue
as follows: A unit whose service time is nQ seconds must enter the end of the queue exactly
n times. Roughly speaking, each time the unit enters the queue it finds E (or E') units ahead
of it (this approximation is evaluated presently). The time spent waiting for service each time
around is then approximately QE. The time actually spent in service is exactly nQ. Thus,
the approximation to Tn , Which we label as TI'1 is

(12) Tr'l = nQE + nQ.

Upon comparing this to Eq. (10) for the strict first-come first-served system in which

1
T = QE +nQ,
n 1-¢

we see that for units which require a number of service intervals less (greater) than 1/(1 - 0),
the round-robin waiting time (for the late arrival system) is less (greater) than the strict first-
come first-served system. One notes, however, that the average number of service intervals
is exactly 1/(1 - o). Thus, for this approximate solution, the crossover point for waiting time
is at the mean number of service intervals. An evaluation of this approximation may be ob-
tained by comparing the quantity Tn/Q as given in Eq. (4) and Tl"l/Q as given in Eq. (12). That
is, the approximation is only as good as the agreement between these two (for the late arrival
system f):

n AQx n AQn
—
L5 pradiloewy 1= pt Si-ip

(13)
where

(l—ocy)(l-ozn—l) )
(1-0)2@1-p)

X =1+

In Figures 2-4, curves of (1 - 0)/(0Q) W, (p) are plottedi to show the general behavior
of the round-robin structure for the late arrival system. On each graph, points corresponding
to the first-come first-served case have also been included. The normalization (1 - 0)/(0Q)
is used for convenience so that for the first-come first-served case, we obtain the curve

*That is, a well-known result in queueing theory (see for example, Rice [5], p. 272) is that the
probability of finding a non-empty system is equal to p.
For the early arrival system, we compare

n AQ px n AQn
= r— - p‘—-—)—l—-— o .
=R =P

fIn all the results of this article, the expected value W, of the time spent in the queue for a
unit which requires n intervals of service is obtained from T, B by W = T - nQ.
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Figure 2 - [(1 - o)/(cQ) W, (p)] for
the late-arrival time-shared serv-
ice system. (o= 19/20)

Figure 4 - [(1 - 0)/(cQ) W, (p)] for
the late-arrival time-shared serv-
ice service system. (o = 1/5)

Figure 3 - [(1 - 0)/(cQ) W_ (p)] for p/(1 - p), which is a function only of p.
22(‘: Slf/iet;fnr.riéal:ti‘;‘;'Shared §ELV= Note that the only parameter change among
Figures 2-4 is the value of 0.
Figures 2-4 indicate the accuracy of
the approximation discussed above in which
the crossover point for waiting times is at the mean number of service intervals, 1/(1 - 0).
In Figures 2 and 3 there is no noticeable difference (on the scale used) between the first-come
first-served points, and the curve for n = 1/(1 - 0); moreover, in Figure 4 the points fall be-
tween the curves for n=1 and n = 2, since 1/(1 - 0) = 1.25.
It is interesting to note that both round-robin disciplines, along with the first-come
first-served discipline offer an example of the validity of the conservation law (see Kleinrock
[3]). That is, if we define

Tn(FCFS) as given by Eq. (10),
Tn(LAS) as given by Eq. (4),
Tn(EAS) as given by Eq. (8),
and also
Wo(-) = To(-) - nQ;
then it is a simple algebraic exercise to show that

sz o

(14) ) PaWy(-) = constant = A5 |

n=1
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where
. = {FCFS, LAS, EAS}
and

Pp = P8, = p(1-0) &1

But xn = Asn = average arrival rate of units which require n service intervals. Thus, Eq. (14)
may be rewritten as

[+ o]
N Q
(15) W = ; (Ap/2) W, (-) = constant = (————l_p)p((;_o) .

This equation states that the mean waiting time,* W, is a constant which is independent of the
three disciplines discussed. Thus, as is to be expected, one does not improve the mean wait,
W; however, by introducing the round-robin system analyzed in this article, one manipulates
the relative waiting time for different jobs (while maintaining a constant W), and thus imposes
a time-sharing system which gives preferential treatment to short jobs.

APPENDIX

Let us first prove Eq. (3), which is the expected value of the distribution T where

= k,
Iy = (1-a)a:
clearly,
0
E = Z krk
k=0
B sl
1-a
But
a= ge
1-2Q
and so

*This mean waiting time is an appropriate average of W since it weights the waiting time W
by the fractional number of jobs (A s\) which must suffer that waiting time.
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where we have used the definition of p = AQ/(1 - 0) as before. This establishes Eq. (3).

PROOF OF THEOREM 1: The following arguments are based exclusively on expected
values. Consider the arrival of a unit (the tagged unit) whose service time is nQ seconds. Let
D, be the expected value of the delay (or time spent) between the completion of its (i- 1)St
service interval, and the completion of its ith service interval. We complete this definition by
assuming that the completion of its Oth service interval occurs at its time of arrival, Clearly
then, Tn » the expected value of the total time spent in the system for such a unit, will be

Let us further define N, as the expected number of units which are serviced between the com-

pletion of the (i - 1)St and ith service interval of the tagged unit, i.e.,

D.

A
1 Q

and so

n
(16) SR

i=1

We now derive a general form for Ni . Upon its arrival to the system, the tagged unit
finds a certain number of units in the queue, the expected value of which is E by definition.
Note that the service facility is empty whenever a new unit enters the system. Thus

N1=E+1.

The addition of unity is due to the service interval used up in serving the tagged unit's first
time interval. Now, each of these E units will remain in the system with probability o, and
S0 o (N1 - 1) of them will contribute to Ny . In addition, during the time Q (N1 - 1), devoted to
servicing these E units, we expect A new units to arrive per second, and so we must also add
AQ (N1 -1) more units to NZ' Besides all this, for n > 1, we must add one more (the tagged
unit itself) to N, , giving

NZ = 0(N1—1)+AQ(N1—1)+1

(c+2Q) E +1.
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In calculating N3 , we see that a fraction o of the units which were served before the second
time interval of the tagged unit will remain in the system, i.e., cr(N2 -1). In addition during
the time Q (N2 - 1) devoted to servicing these units, A\q (N2 - 1) new units will arrive. Also,
for n > 2, we must add one more (the tagged unit again) to N3. However, we, now notice a
new effect entering, namely, the presence of a unit which arrived (with probability AQ) at the
conclusion of the first service interval of the tagged unit. This additional unit was placed in
back of the tagged unit when it arrived, and therefore did not appear in N2 . From now on,
however, it will appear as an additional AQ added to each Ni for i = 3. Thus

N

3 O'(Nz-l) +/\Q(N2-1) +1+2Q

O+ \Q2E+2Q+1.

For Ni’ we merely repeat the arguments used in finding N3, with the substitution Ni for N
and Ni—l for N2' This gives us, for i=3,4,..., n,

3

(17) N;

U(Ni_l- 1) + AQ(Ni_l- D+2Q+1

(0+2Q) (Ni-l' 1)+2Q+1,

Now, letting o = 0 + AQ, we assert that

i-3
(18) Ni=a1'1E+AQZ ol 41
=0
is the solution of Eq. (17) for i= 3,4,..., n. Let us prove this by induction. Clearly, it holds

for i = 3. Assuming its validity for Ni-l’ we will show its validity for Ni as follows:

N; = G(Ni_l-—l) +AQ + 1

i-4
] H1'2E+)\Q ad | +aQ+1
j=0

L}
R
=1
3
>

o
Qu
+
—
+
>
O
+
—

1)
Q
[
—
=
+
>
o
Qu
+
—

which proves the assertion. Now if we take the usual definition of
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in=0 for b<a,

b
i=a

we see that Eq. (18) also holds for i = 1,2, Thus, we find that Ni(i =1,2,...,n) as given by
Eq. (18) is the general form we were looking for. Recognizing that, for 0 = b and | x| < 1,

b+a bad
4
(19) xk = xa !'.__-_)_(._._
; 1-x
k=a

we can readily evaluate Ni' First let us display that x < 1 (i.e., that @ < 1). This is easily
done by recalling that we are dealing with systems in equilibrium (steady-state). This implies*
that p < 1. Substituting for p we get

A
= Q <j
1-0

or

AQ +0 < 1

-

This shows, of course, that o < 1,
We now use Eq. (19) in Eq. (18) and obtain
E +1 i=1
(20) N, =

i-1 - ;
o E+AQ__1__-__&_+1 i=2,3,...,n.

Substituting for E, and collecting terms, we get

- &
(1 2 i=1
1-p
(21) N; =<
L, g Bli=ou) o heg i=2,3,...,n.
L1-p 1-p

*As discussed on p. 60, @ is the product of the average arrival rate and the average service
time. Thus, it represents the average number of seconds of service that enter the system
each second. Clearly, if p > 1, the input demand is in excess of the processor's capacity
and an infinite queue will form. It may be shown that a similar overload occurs at p = 1.
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We are now in a position to evaluate Tn’ from Eq, (16) by substituting in Eq. (21). By
performing the required operations, and recognizing that 1 - @ = (1-0) (1-p) we are led to

1 (1-0a)(1 -an'l)
n 1. 1-p 3 2
¥ (1-0)%(1-p)

which completes the proof of Theorem 1.
PROOF OF THEOREM 2: Let us first establish the distribution of r, as given by
Eq. (6). Using methods similar to those of Morse [4], we derive the following equilibrium rela-
tionships among the Tt
AQry = (1-0)(1-2Q) ry
[(1-0)(1-2Q) +2Q0] ry = AQrg + (1-0)(1-2Q) ry

[(1-0)(1-2Q) + 2Qo0] re = AQor, g + 1-0(1-2Q) Yiai k=2,

As before, let

;5 i
1-2Q
and
AQ
p_l-o

which proves Eq. (6).
The expected value of the above distribution is

'—
E —Zkrk
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(1-p)a .
(1 -a)2 o

E'=

But

po

l-a=1-
1-2Q

(1-1Q-0) +o(1-p)
1-1Q

1-p
1722Q

Thus

E' = l—p (1-2Q),

which proves Eq. (7).

Now, for the theorem. The arguments needed here are quite similar to those used in
Theorem 1, and therefore will be shortened considerably. In particular, define T Dl, and
N as previously, thereby establishing Eq. (16) again. Let us now derive a general form for
Ni' Upon entering the system, the tagged unit finds E' units in the system. Now, if there is a
unit in the service facility (which occurs with probability 1 - rg= p) only E' minus the ex-
pected value of the number in the service facility will contribute to N1 (since any unit in serv-

ice must be on the verge of being ejected from service). Well, this expected value is just
0. (rg) +1- -1y = p,
and so
N, =E'-p+1,

where the +1 term is due to the tagged unit itself. Following the same reasoning as in Theo-
rem 1, we find that

N, = /\Q(Nl) + CT(N1 -1)+op

where the o p term is due to the unit (if there is one) found in service at the time of arrival of
the tagged unit. Using the same type of argument, we find for i> 2,

N, = )\Q(Ni_l) + G(Ni_l-l) +1

where, for i> 2, we omit the 0p term since it is fully accounted for in N2 We assert that
the solution to this set of equations is
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E'+1-p T
(22) Ni= i1 i-9 i-3 g
a1 g ol AQ(I-p)+AQZaJ+1 i>1.
=0

That this is indeed the solution is easily shown by induction on i as follows. Clearly, it is true
for i= 1,2, Now, assuming its validity for Ni-l , we will show its validity for Ni as follows:

Ni =_ozNi_1+1-o
. - i—4 .
=0 al'zE'+a1'3 /\Q(l-p)+)\QZa]+1 ol
j=0
: . i-3 .
= al-l g +ozl'2)tQ(1-p) +)\QZ alva +1-0
=1
. . i-3 .
= ol B +a¥"22Q(1-p) +2Q Z al+1,
=0

which proves the assertion. Substituting for E', performing the indicated summation, and
collecting terms gives us

L T i=1
1-p

(23) N, =

S p(1-0a) o i-2

1% 25355 s75D%
1~p l-p § oy ’

We are now in a position to evaluate T, from Eq. (16) by substituting in Eq. (23).
Performing the required operations leads us to

n-l)

Q%o |, , (-oa)(1-a
1-p 1-@ (1-0)2(1-p)

which proves Theorem 2.

PROOF OF THEOREM 3: Let us first consider the late arrival system, Arguing on
an expected value basis, we recognize that, upon entry, the tagged unit finds E = (po/1-p) units
in the system. Each unit in the queue has an expected service time of Q/(1-0), Now, as far
as the unit in service is concerned, we appeal to the Markovian property of the geometric dis-
tribution (e.g., see Ref. [1]). That is, we assert that the expected additional service time for
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the unit in service is Q/(1-0) (given that more service is required)., Thus, each of the E units
in the system (queue plus service) will delay the tagged unit by Q/(1 -0) seconds, and this unit
will spend nQ seconds in service itself. Hence, for the late arrival system,

po

W= aya, "

Q

which proves Theorem 3 for the late arrival system.

For the early arrival system, we recognize that, upon entry, the tagged unit finds
E'=[p/(1-p)] (1-1Q) in the system. Now, as before, given that the unit in service requires
additional service, the expected value of this additional service is Q/(1 -0) seconds. But now,
we cannot be sure (as we were in the late arrival system) that the unit in service will require
more service; that is, with probability o, the unit in service will remain for more service.
Also, the expected number in service is merely p (that is, the probability of finding one unit in
service) and so, the delay suffered by the tagged unit due to the unit in service is po Q/(1 - 0).
Each of the units in the queue (the expected number of which is E' - p) will, on the average,
delay the tagged unit by Q(1 -0) seconds. In addition, the tagged unit will spend nQ seconds in
service. Hence, for the early arrival system,

= (E'-p) Q + po Q + nQ
1-0 1-0

e
1

Q

1-0

[E'-p(1-0) ]+nQ

Note that

po
1-p

A= pl1-0) = 2o (1-2Q) -

and so, we see that

po

= Qia,

nQ

Tn

which proves Theorem 3 for the early arrival system.
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