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SUMMARY

We consider input streams of data sharing a buffer which
is emptied by a single output channel and study differ-
ent buffer allocation schemes in such a multiplexing
node. These schemes range from Complete Sharing {CS) . to
Sharing with Minimum Allocation and Maximum Queue Length
(SMAMXQ). In Complete Sharing a pool of buffers is
shared by input streams without discrimination, whereas
in Sharing With Minimum Allocation and Maximum Queue
Length, besides a number of buffers allocated to each
stream permanently, there is a common pool of buffers
which can be shared by all input streams in such a way
that there is a limit on the number of messages from
each class that can be present in the shared pool simul-
taneously. For each scheme we present either explicit
expressions or numerical algorithms to calculate dif-
ferent performance measures, namely, blocking probabil-
ity, system throughput, utilization and delay.

1. INTRODUCTION

We consider a multiplexing node in which streams of mes-
sages from one or more input channels are buffered and
merged into a single outgoing channel. As a result of
finite storage size, some messages may be lost.

This type of system has been analyzed by others in one
form or another, but almost all of the previous studies
were based on the assumption that as far as allocation
of buffer storage is concerned, there is no discrimina-
tion among messages from different input channels

(which we call different classes of messages). In other
words, a pool of buffers is completely shared among dif~
ferent classes of messages. The purpose of this paper
is to analyze and compare some other storage sharing
and/or allocation schemes.

The simplest scheme is Complete Sharing (€s), in which
an arriving message is accepted if any buffer storage is
available. In this scheme, all classes of messages are
treated uniformly. The other extreme of buffer alloca-
tion, Complete Partitioning (CP), partitions the storage
into fixed blocks of buffers and assigns each block to a
class. In this scheme a message is rejected if the
storage allocated to its class is full, even if the en-
tire storage is not completely used. Intuitively, as
long as throughput or probability of blocking is of con-
cern, CS results in a better performance. That is be-
cause as long as there is a buffer available, it can be
used by any incoming message, regardless of its class.
CS results in a higher throughput and utilization; how-
ever, it suffers from two drawbacks. First, if input
rates are asymmetric, the classes with higher input
rates dominate the system and comsume most of the stor-
age, and although the total throughput and utilization
of the system is high, the contribution of the low input
classes to this throughput may be low. In other words,
the high input classes deny the others use of the sys-
tem.! Another drawback is, that even with uniform input
rates, if all input rates are scaled up simultaneously
by a factor (say &), as 8 > <, in contrast to intuition,
there is a nonzero probability that any one of the

classes of messages will be absent from storage. This
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phenomena may not be desirable in certain situations,
as we may require that in the case of infinite input
rates there should be one or more messages of each
class present in the system at all times.

The above considerations lead us to impose some restric-
tion on the contention for space. The first drawback
may be remedied by imposing a limit on the number of
buffers that can be occupied by any class simultaneous-
ly. The scheme which incorporates this idea will be
called Sharing with Maximum Queue (SMXQ). Even with
SMXQ we are not guaranteed to have remedied the second
drawback, the nonzero probability of one or more classes
being absent from the system at a very high input rate.
In order to remove this deficiency, we must allocate a
minimum number of buffers to each class. This leads us
to a scheme which has been called, Sharing with Minimum
Allocation (SMA). In this scheme, besides the minimum
allocated buffers to each class, there is a pool of buf-
fers to be shared by different classes of messages. |If
this sharing is done without limitation, the scheme will
be simply called SMA. If, however, we impose some limi-
tation on the number of messages of each class that can
be present in the system, then the scheme will be called
Sharing with Minimum Allocation and Maximum Queue
(SMAMXQ) -

Statistical multiplexors have been modeled and analyzed
by others (Chu2 and the references therein), but the
problem we are addressin% here has not been studied be-
fore. Rich and Schwartz3 and Drukey“ made a preliminary
study of buffer allocation in a Store and Forward (S/F)
node. A comprehensive study of buffer sharin? in S/F
nodes was carried out by Kamoun and Kleinrock H: 31 -
though most of the terminology used in this paper is
from these last works, the present study is different
from theirs since in a S/F node, each class of input
stream has a dedicated output channel, whereas in a
statistical multiplexor a single output channel is
shared by all input messages. This introduces major
differences in the analysis.

In Section 2 we analyze these schemes and present either
explicit expressions or numerical algorithms to calcu-
late different performance measures, namely, probability
of blocking, system throughput, etc. Finally in Section
3 we compare the performance of these schemes.

2.1 The Model

Our model consists of a single server (i.e., one chan-
nel) queueing system with finite waiting room of size
B. The input to the system consists of R independent
Poisson streams with rates kr (r=l,2,...,R). In order

to analyze the system we require that all message
lengths be distributed exponentially with the average
length 1/u bits. Assuming the output channel speed to
be C, the service time is exponentially distributed with
rate uC. We further assume that arriving messages which
are not accepted leave the system without service and
the accepted ones are served on a first-come-first-
served basis and that there is no priority involved.

If we characterize the states of the system by vector
n = (n], Ny ...,nR), where n_ is the number of class r

messages in the system, and notice that the entire sys-
tem is a birth-death process®, then we are able to
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derive the steady state joint probability distribution.
This distribution obe;s the product form solution of

the network of queues 8, To save space we present only
the final solution. For a derivation see [9].

n
r

R p R
Tl | r 5 =
Plg] an. rl.—:ll ﬁ:" ne Fx ; ,—Z:'] B (1)

where P Ar/uc and x € {1,2,3,4,5}.

The subscript x refers to the scheme we use. The inte-
gers 1 to 5 refer to CS, CP, SMXQ, SMA, and SMAMXQ
respectively, and Fx is the set of possible states for

for scheme x. C_ is a normalization constant defined
so that the probabilities P[n] sum to one.

n ¢
-1 pr R
£ 2: n! 11 =rl i ne 2: n (2)
QEFX r=l r r=|

Notice that C
is empty.

is also the probability that the system

and then
In contrast to the analy-

In the following we will first calculate C
other quantities of interest.
sis in [1], we will see that, except for the CS scheme,
values of C_ cannot be found explicitly; as an alterna-
tive, however, we give efficient algorithms for their
calculations.

Throughout the remainder of this section we will use the
following notation:

a_ = Number of buffers allocated to class r messages
" (this is used in CP and SMA and SMAMXQ).
br = Maximum number of buffers of the shared storage
which can be occupied by class r messages at
any time.
B = Total number of buffers
B_ = Total number of shared buffers.

Notice that we have the following relationships: B = Bs
in CS; B=Ear and B_ = 0 in CP; B, = B - Za_ In SMA
and SMAMXQ.
For each scheme we-will consider two special cases, and
for each case we will study the limiting behavior of the
system. These cases are (1) Ar = GA?, ]2 .., R and
8t ; and (2) only one of the input rates, Ai' grows to
infinity.
202
The set of feasible states for this scheme is
B {n]oc< n. S B, b =12, .. R}

Complete Sharing (CS)

(3)

The equatia;s describing behavior of the system are
well-known ® (an M/M/1 queueing system with finite wait-
ing room) and we report them here.

-1 S e
€, = WG] - = 5 (4)
I=ip
» Py S e AR
PB = Pr[an B8] = pB+' (5)

where p =\A\/lC and A =73 A,

A
Notice thaﬁ\grobabijity of blocking is the same for all
classes of messages.

The marginal distributions can easily be found9

B
Pr[nr = k] = P(0) z:

n=k

[(',:) p:(p - pr)"'k] (6)

The total average number of messages in the system is
B+1

o 1 - (B+ l)p8 + Bp

P e pB'H

o)

n=

and by using Little's result'o, the average time spent
in the system for the accepted messages is

1/uc 1= (1 +8)p° + Bp®!
S0 e pB

For the marginal statistics we have the following:

T =

(8)

F} = E[number of class r messages in the system]

A
r —
T n

(9)

n o=

r

and
T =T (10)
Special case (1): A_ = 5A‘r’ s E V20, 0 R oand A,

We have the following results:

0 if n= an B
LT 2
s ifn=23%n =8
oB Al r
p r=l r

In particular

lim PB = lim Pr[).'.nr = B] =1
St S0
also v o
. By, .0, 0 =9, 0v8=
Lim peln, = k] = (¢ J(6/6%) (1 - 0276%) (12)

Further, we have

tim Prin_= 0] = (1 - o268 # 0 (13)

§too

Eq. (13) reveals an interesting fact, namely, even if
the input rates are scaled up to infinity, there is a
nonzero probability that one (or more) of the classes
of the messages are absent from the system. This is a
distinct drawback of the CS scheme.

Special Case (2): X\.tw. From Eqs. (4 - 6) we get the
following results: '

1::; Pr[an=k]'{? :f: (14)
1:;:@ Prin_ = k] -{(', :;8 s P (15)
1:::@ Prin, = k] = {? t’_‘: (16)
Tim A2 = lim AZ(1 -PB)-{:c ::; (17)

Aifw A‘+m

These results show how the system can be dominated by a
single class of high-rate messages.

2.3 Complete Partitioning (CP)

The set of possible states will be

r=1,2,...,R} (18)

F2~{2|0§_nr§ar 4

and we have B = } a, .

In this case the computation of the normalization term
C2 Is not as simple as CI‘ and in fact, no explicit
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expression for this constant has been derived. Notice

that the summation in

n
5 R o
c‘gz n!"«n—r—. % ngzn
nef, r=1 r 4
X Bl f(R=n-1y_(R+8B
is taken over 2 ( - ) =( 5 ) possible system
n=0

states and a direct summation is out of the question.
Unfortunately, because of the n! term we cannot even

use the generating function approach as in B s B e 2 [
and we must resort to numerical techniques. These tech-
niques have been studied by others and interested read-
ers can refer to [13,14,15,16,17]. However, the problem
at hand is different from theirs and we must modify
their techniques.

We define the following set of states:
m
nY n_=n, 0<n <a,

B (19)

$(n,m) as defined above is the set of all system states
in which only the first m classes may be present in the
system and the total number of messages in the system

s(a,m & {n = (ninyeeeeun))
o dle 2k sy

B
is n. Notice that F2 = U 5(n,R) and we have
. n=J

n
B r

R p
v o _r__]
nz=:0[ges(n,R) d rgl A

we also define an auxiliary function u(n,m) as
. n

-1
Cz =

mop
n E-—,:‘oinga;; and 0 if n>a¥
r=1 'r "

u(n,m)é E: [n!
' QCS(n,m)

-ksm = a%
where a* zr-I a , and clearly we have B = af.

c, is related to u(n,m) according to the following

equation: -1 -1 B
C2 = P(0) = E u(n,R)

n=0

(20)
We also have

r=1

n ] = P(0)u(n;R) (21)

In what follows we will present an algorithm to calcu-
late iteratively u(0,R), u(1,R)... , U(B,R). Following
the approach of [13] we have

u(n,m) = )2_:[

=0

However, because n € S(n,m) and O = k, then k < a,

u(n,m)}
)

where (a,b] = inf(a,b). Factoring out the constant
terms, we observe that for m > 1

and we have

u(n,m) =LZNlI{

k=1

2

neS(n,m
“n =k
m

(n,m) ST ok
u(n,m) = kz=:0 [(k)omu(n-k. m-l)]

However, by our definition we should have (n-k) < a*
or k> (n-a;_l) and we have for m> | = Ol

L"-2n)

$k=|'ozn-a* ;\[(:) ":.“(“'k- m-l)] 0<n-ak
yn-ak_

u(n,m) = l
0 n>a* (22)
m
and for m =1,
n
ORI R S (23)
and
u(o,m) =1 1 s:m <R (24)
Egs. (22 - 2h) provide us with an interative scheme to

calculate u(n,R). One has to first initialize the

first column and row of maxtrix u according to Egs. (23)
and (24), and each element of columns 2 to R is calcu-
lated according to Eq. (22). :

Having calculated the matrix u, we can find expressions
for other statistics of interest. Cp and Pr[an-n]
have been defined already in Egs. (20) and (21). For
the total average number of messages in the system, we
have

B
n=P0) Y u(n,R)n (25)
n=1

and for the marginal distribution of the Rth class, we
have the following (for the derivation see [91)

has
Pringekl = PO T [(3) utok, &) o] 26)
a%x_
Pring=0] = P(0) Zo [u(n, R-1)] (27)
n=

and, in particular, the probability of blocking of the
Rth class will be

B a
pB. = Prin,=a ] = P(0) " Ju(n-ag, R-1 |p R (28)
SRR by ng;R“aR)” R ] R

we can find other measures of interest
average number

From Eq. (26),
such as throughput of the Rth class, X;;

etc. In order to

of class R messages in the system, Ng,
find statistics of other classes of messages, we must
rearrange the ordering of classes and position the class
of interest as the Rth.

special Case (1): A = 5x‘: . fos 152,008, 3nd Bte

lim Pr{Zn =n] = 0 if n #B ;1 ifn=28 (29)
S 4
é;: Pr[nr=k] =0ifk#a ; Vif k=8, (30)

Comparing Eq. (30) with Eq. (13) we notice that the CS
scheme does not display this property.

For the limiting throughput, we have

lim A~ = uC (31)
§teo
2R
1im A= lim A (1.~ PB ) = — uC (32)
§4oo St " f L

which shows that in the limit, each class will use a
portion of the output channel equal to the fraction of
the storage it is allocated.

Special Case (2): Xifm . In contrast to the CS scheme

the limiting throughput of other classes is not zero.
The expressions for the limiting probabilities of
blocking and other measures are very complicated. in
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[9], these expressions are derived for the case R = 200
which we report below.

= B: B
(az)p]
lim PBr=_§ iif Spi=t e i e D
\fa nvn
2
ol n n+1l
(a, ) %1
n=a 2
2 uc r=1
2 (8
n=a, 2 !
lim \l:= (34)
A, to a B
2 2 > ( D= )
£ . a, -1 °
n=a, .
B LJC r=2
Z (n pn)
n=a, 25 !

The above expressions show that if one of the input
rates grows to infinity, it does not prevent the other
class from using the system. This was not the case for
the CS scheme.

2.4

The set of feasible states for this scheme is
B

Sharing with Maximum Queue Length (SMXQ)

F3= {D , P nriB

s 0sn eb., & e ¥ 2,000,k A(38)

where br is the maximum queue length for class r mes-
messages. Clearly, if Ebrfyﬁ this scheme reduces to CP

and if br> B, r=1,2,...,R, it will be identical to €S,

To calculate the normalization constant C3 and other

statistics as we did for the CP scheme, we must resort

to numerical techniques. The algorithm for this calcu-
lation, except for minor differences, is similar to the
one for the CP scheme which we will briefly explain.

The sets S(n,m) and the auxiliary function u(n,m) will
be defined as follows:

A

m
S(n,m)={9={n],n2,...,nm) ]; n.=n. 0_<_nr_<_br, re[1,n]}

n
-
m p
u(n,m) & =3 {n.’ I nﬁr—}
gss(n,m) eI
m

Let b*m = br; then by using an approach very

r=]
similar to CP, we have for m > |

Ln,bm-’ oiles
[kelo.n” p.az [()ehutom] < ey

u(n,m) = l
0 n >l?'b$J
and for m=1,
n
u(n,1) = f 0<n< L?.b]J
u(0,m) =1 m=tl 200 R

where, as before, [a,b; = inf(a,b) andfé,b1 = sup(a,b).

Having calculated the matrix u, we can find the statis-

tics of interest. |In particular
-1 bl
€, =P(0) " = 3 u(n,R) (36)
3 n=0

(37)

R
Pr[ 2 ne= n] = P(0)u(n,R)
r=1

B
n=E [number of messages in the system] =P(O)Zu(n,R)n

=1
g (38)
For the marginal statistics of class R, we have
B bE K
n k
Z: [(k)u(n-k, R-I% PR
e n=k
Pring=k] 5 0<k< LB,bRJ
Z u(n,R) (
Z 39)
In particular
LB,bﬁ_U
z: u(n,R-1)
=0
Pring = 0] = —12 (40)
2: u(n,R)
n=0

The blocking probability of class R messages is the
probability that either the entire storage is full, or

o is equal to bR. This leads to
B-1 Nj
e b
R
u(B,R) + Z_: [(br‘)u(n-bk, R-l)]pR
n-bR R
PB, = = (41)

2: u(n,R)

n=0

In order to find marginal 'statistics of other classes,
we must rearrange the ordering of the classes. Now we
consider two special cases:

Special Case (1): A = sx‘r’, =) Reand At iin

this case we have lim PB = b rmals2 s SR and

§teo
d {OforOf_k<B-b"‘

R=1 (42)
¢Oforsz-bi‘i‘_'

This shows

lim Prn_ =
84 B

In particular, lim Pr[n_=0]=0 if B > b#
R R=1

St
that, in order to guarantee that at infinite input rate
(84) there is always one or more packets of a certain
class of messages (say r) present in the system, we
should have B > ZiB=l,i#rbi'
vations behind using the SMA scheme. For the throughput
of the class R messages, we have for bﬁ > B

This is one of the moti-

B -1 b
h(B-1,r) -( " )h(B- F= b, R-l)o: :
lim A7 = R A
St h(B;R) R
4
where h(n,m) = u(n,m) | And for b§ R )
P, =p; =
I I
Him A% = b /b* uC (44)

St
which is the same as for the CP scheme.
Special Case (2): Aifm .

BimiPBE =
At T
I

I f bi > B, then intuitively

I, =2 == R and
(45)

IimA’={o L
e uC r=j
i

This behavior is similar to the CS scheme,

bi < B, then

If, however,

lim PB_ = { (46)

Aifw
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in fact, b, buffers will be occupied by class i mes*

sages with'probability one and the B-b; remaining buf-
fers will be shared by the other classes (according to
sMxQ). The expressions for the limiting probabilities
are complicated and we only present the expressions for

the case, R = 2.
B) B
P
(bz 1

lim PB = —>—— if r=1; 1 if r=2 (47)
At ] n\.n
- > (5,)90
n=b2 2
i e, n\ n+l b2 8 n=-1\n
(o )"1 o+ 2 (b )
n=b2 2 n=b2+l 2
lim \” = uC, r=1 ; uC
At T g n\n 8 n\.n
2 % P ¥ (o)
b, )P 24 \b,)"1
n=b2 2 n-b2 2
(48)
ifr=2

Comparing Egs. (47) and (48) with Egs. (33) and (34)
we notice that in this case the behavior is like the
CP scheme when a pool of B buffers is partitioned into
(B- bz) and b2 buffers.

2.5. Sharing with Minimum Allocation (SMA)

As Eq. (42) suggests, in order to guarantee that at
infinite input rates one or more packets of a certain
class of messages will be always in the system, at
least one buffer storage must be permanently allocated
to that class of messages. This is the idea behind the
SMA scheme in which, out of a pool of B buffers, a

(r=1,2,...,R) buffers are permanently allocated to
class r messages, and the remaining BS=B- Zar buffers,

similar to the CS scheme, are shared by all of the
classes. As a result, the set of possible states will

R
Z rO.nr & arT_<_B

ng)
r1er==|

F10={3= (n‘.nz....
Oinr_<_85+ar, r=l,2,...,R}

where BS=B- Zar and ra,b1 = sup(a,b)

Calculation of the normalization factor Ch is more

complex than for the previous schemes, as we will see
shortly. We start with ordering the classes in an
arbitrary manner and define the following sets:

m
T(b,n,m)é{n= (nl,nz,...,nm) I Z n.=n;

r=1
m
3 fo,n -a Vab; 0<n_<b+a_, r=1,2,...,m}
el - r— r
r=|
1 <m<R.

where OibiBs , 0<n<B,

T(b,n,m) is the set of states where no messages of
classes m+l, m+2, ..., R are in the system, the total
aumber of messages in the system is n and the number
of messages in the shared storage is b. Instead of

a two-dimensional matrix u, we must use a three-
dimensional matrix

n
»
m p m
T i ! r .
i geT(b.n.m) {n rgl ;'_rT] : r}-;l o

The elements of matrix t can be calculated according
to the following equations. (For a derivation, see

[91.)

Forlf_m:R

L"%)

k= ro,n-b-alf:‘

-ﬂ[(:)p:‘ t(b, n-k, m-l)]

n-am.b
comm e 3 (i 1y Jeatlbky nstive ), art)
k=1 m
if n <b+ ak
- m
0 if n>b+ ak
m

t(b,0,m) =1 if b=0; 0 if b>0
t(0,n,1) = pr; if 0<n<a, ; 0 if n>alA

t(b,n,1) = 0 if n#b+a; p? if n=b+a, b>0

Using the matrix t, we can find values of interest.

Bs b+ar
-1 -1
c, = P(0) "= bZO Y t(b,n,R) (50)
. =0 n=0
Bs
Prlzn =n] = P(0) Y, t(b,n,R) (51)
b=0
For the marginal distribution of class R we have
Zs‘5 aﬁ_ﬁb-fO,k-aR'l
Prln.=k] = P(0)
R = - =
[b= 0,k agl n=k (52)
[(E)p: t(b-ro,k-aﬂ. n-k, R- I)]
In particular, B b+a¥
s & (53)
Pring=0] = P(0) Yoo 2y b (Bynafzl)
b=0 n=0

The probability of blocking of class R is the probabil=
ity that the shared storage is full and that np > ap.
This gives us

Bs‘*':"r K B-k .
P, = P(0) s?;aR °R{,,z.:k[(k) u(B, - (k-ap), n-k, R-l)]}

Expressions for the limiting probabilites when )‘r"”‘:'

r=1,2,...,R and &t= are very complex and are not pre-
sented here. We can show that lim PBr =1, r=1,2,...,R
§

and lim Pr[nr=k] =0 if O<k<a, and # 0 if al__<_kiBs~l-ar

St
For the special case, )\i*m we can show that
lim Pr[nr=k]< WAL B Ek RN S and
At =0 k>a, , r#i

;‘ir;.\‘m Pr‘[ni=k] =0 if k# Bs+ai; =1 if kng+ai
i

The analysis of SMAMXQ is quite identical to the SMA
scheme and to save space we do not present it here.
interested reader may refer to [9].

The

3. COMPARISON OF SCHEMES AND CONCLUSION

lere we present some performance curves and compare dif-
ferent sharing schemes. In all of the cases we study,
we assume R=2 (i.e., there are two input classes).

Figs. 1(a) and (b) show the behavior of the (normalized)
throughput and probability of blocking with respect to
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NORMALIZED THROUGHPUT pl1 — PB)

BLOCKING PROBABILITY

ALLOCATED STORAGE TO CLASS 1

Fig. 1. Effect of Allocated Storage in CP

the allocated storage when the CP scheme is used. |In
these figures a pool of 10 buffers is shared by two
classes of messages. The horizontal axis represents
the number of buffers allocated to the first class, a|.
Y 10 - a]).
optimal allocation of storage which maximizes the total
throughput (or minimizes the blocking probability). The
optimal partitioning of storage depends on the values

of the input rates. A good approximation to this parti=
tioning is to divide the storage according to relative
values of the input rates (i.e., a, = X'/(A]+ XZ)B and

(hence a It can be seen that there is an

a, = Az/(A'+ 12) B). The performance curve is flatter

for larger input rates. This means that deviation from
the optimal partitioning does not affect the total
throughput severely. Therefore, as can be seen from
the curves for p; and o£ , one is able to control the

contribution of each class to the output by changing

the partitioning of the storage with little degradation

of the performance. For example, in Fig 1(a), a, =6 and
az=h result in an almost equal contribution to the out-

put by each class and the drop in the maximum throughput
(which is achieved at i3 and a, = 7) is negligible.

in Fig. 2, a pool of B=6 buffers is shared according to
the SMXQ scheme. Notice that we have the following:

1. 4 F bl=b2=} then SMXQ is equivalent to CP.
25 Iif b|=b2=h then SMXQ is equivalent to SMA(aI=a2=BS=2)
3. If b,=b,=5 then SMXQ is equivalent to SMA

e (a,=a,=1, B_=h)

JEngs=t=g :

4. If bl=b2=6 then SMSQ is equivalent to CS.
The curves show the normalized throughput of each class
when A' remains fixed at 0.3 and Az varies. It is seen

how pf degrades when b‘-b2=6 {CS). In fact, as Az$m.

according to Eq. {17), p°¥0. Fig. 2 shows how one can
prevent this phenomena by permanently allocating some
buffers to class | messages. The asymptotic values of
p; and pé can be calculated according to Eq. (48).
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Fig. 2. Comparison of Different Schemes
When One of the Input Rates lIncreases

Fig. 3 shows the probability of being absent from the
system, Pi(O) as a function of the input rate to the

system. In this figure the two input rates are identi-
cal (i.e., A= A A, = 2 = ZAZ). The horizontal axis

represents the total input rate A. Again, a pool of
B=6 buffers is shared according to SMXQ as in Fig. 2.
As X increases, all curves except the CS curve eventu-
ally decrease to zero. The CS curve, however, does not
decrease to zero. Its asymptotic value as At» can be
calculated according to Eq. (13).
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Probability of Being Absent from the System
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As we mentioned at the opening of this paper, if the
measure of performance is the total throughput or the
probability of blocking of the system, then the CS

scheme results in a better performance. This fact is
shown in Fig. 4, in which a total of B=6 buffers are
shared as in Fig. 2.
(X] = Xz). In this figure the normalized throughput of

class i is plotted as a function of its input rate, A..
Notice that the total throughput is equal to pr. For

completeness, we have also presented the total average
delay of each class in Fig. 5.
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Fig. 4. Comparison of Different Schemes: Throughput
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Fig. 5. Comparison of Different Schemes: Delay

We conclude that although the CS scheme always results
in higher throughput and lower blocking probability,
in situations where other measure of performance are
important (e.g., throughput of individual message
classes), one should consider other buffer sharing
schemes as well. In general the final decision should
be based on the particular parameters of environment.

The two input rates are identical,
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