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Abstract

We consider various schemes for sharing a pool of buffers among 2 set of communi-
cation channels in a communication network environment. Four sharing schemes are
examined and the results of the analysis are presented and displayed in a fashion
" which permits one to establish the tradeoffs among blocking probability, utiliza-

tion, throughput and delay.
1. INTRODUCTION AND MODEL

Queueing models for computer networks often assume
infinite storage at the switching nodes. Such an
assumption is questionable. As a result, a storage
constraint must be introduced in realistic network
models. This we do for a single node in-this pa-
per.

In |Store-and-Forward (S/F) computer nets, the out-
‘going channels of a node share a certain number of
buffers (S/F buffers). If no feedback is consi-
dered, (i.e., no retransmission of rejected messa-
ges), the S/F function of a node may be modelled
as a set of M/M/1 queueing systems which share a
finite waiting room, under some scheme.

The purpose of this paper is to analyze and com-
pare a few existing and/or intuitive storage
sharing schemes. The first (and simplest) is the
Complete Partitioning (CP) scheme where actually no
sharing is provided, but where the entire finite
storage (waiting room) is permanently partitioned
among the (say) R servers. At tife other extreme is
the second scheme, Complete Sharing (CS), which is
such that an arriving customer is accepted if any
storage space is available, independent of the
server to which it is directed. CS succeeds in
achieving a better performance than CP (smaller
probability of blocking) under normal traffic con-
ditions and for fairly balanced input systemsg.
However, for highly asymmetrical input rates

(. i=1,..., R) and equal service rates, CS tends
to heavily favor servers with higher input rates,
even though they may be close to saturation (in-
put Tate close to service rate). ' The failure to
Tecognize servers at or near saturation results in
most of the space being occupied by customers wait-
ing for those servers, at the detriment of the
_others. Moreover, even with perf?ctly balanced
arrival rates (i.e., A.=A 1i=1, .[., R), under
overload conditions, cS fails (where CP succeeds)
in securing a full utilization ofjall the R servers.

The above considerations intuitively indicate that
contention for space must be limited in some way.

In order to avoid the possible utilization of the
entire space by any particular output chzannel, we
impose a limit on the number of buffers to be allo-
cated at any time, to any server. This idea is
incorporated in cur third scheme: Sharing with
faximum Queues (SMXQ). Of course, the sum of those
maxima must be greazter than the total space if some
sharing is to be provided. The SMX], however, does
not guarantee a full utilization of the servers
under heavy traffic conditions. This deficiency
motivates the fourth scheme: Sharing with a Minimum
Allocation (SMA) scheme. With SMA, a minimum num-
ber of buffers is always reserved for each server
and, in addition, a common pool of buffers is to be
shared among all the servers, with no further con-
straints on the queue size.

Rich and Schwartz [RICH 75} studied a scheme very
similar to SMA except that the entire common storage
is dynamically allocated to one server at a time.
Drukey [DRUK 75] analyzed the CS scheme with the
assumption that all the p.'s are equal; for the
general case of different’p.'s he restricts his
study to 2 channels. Moreover, problems of this sort
are frequently encountered in telephony and are
referred to as ''graded" systems [SYSK 60]. Their
main interest, however, is -in sharing (extra) lines
as opposed to storage.

In this paper, we intend to characterize the four
schemes under steady state conditions; namely, we
derive expressions for the probabilities of block-
ing, the average time in system and the throughput.
A comparison of the sharing schemes is also pro-
vided. The key to the analysis lies in the fact
that, in steadv state, the joint probability dis-
tribution obeys the well known product form solution
for networks of cueues [JACK 57], [BASK 75], [KLEI
76] (and the bibliographies therein.)

2. AWALYSIS
2.1 GENERAL SOLUTION

¥e consider R M/M/1 queueing systems wvhich share a
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finite waiting room of size B under one of the

above schemes. Queueing system i(i=1, ..., R)

is characterized by a Poisson input stream at a
rate A. and an exponential service time of mean
l/uC..l Customers to be served by server i are re-
ferred to as type or class i customers. Arriving
customers not admitted to the queue (because of the
sharing scheme) depart without service. Accepted
(non-rejected) customers are served on a First-Come-
First-Serve basis.

The sharing of space introduces dependencies among
the R queueing systems. The entire system is a
birth-death process [KLEI 76], whose state can be
simply described by the vector n=(n.;.e.5 Np), Wwhere
ng is the number of type-i customers. The basic
eduation which describes the behavior of the sys-
tem of queues in steady state obeys the well known
product form solution for a network of queues; i.e.,
n n
By e
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=0
where pi = ki/pCi.

P(p) for g & F,
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otherwise

The subscript x indicates the scheme referred to,
i.e., xe{a,b,c,d} where a stands for CP, b for CS,
¢ for SMXQ and d for SMA. F_ represents the set of
possible system states.

In what follows, we first characterize C for the 4
schemes, then, from the joint probability distri-
bution, we obtain the probability of blocking,

the throughput and average delay. We restrict our
study here, to the particular case of equal £:"'s
p.=p) with some constraints irposed on all types of
chstomers. The more general case of different ¢.'s
and further details about this special case may be
found in [KAMO 76].

The above considerations lead to the same probabi-
1ity of blocking PB_, for all types of customers
and consequently to”the same utilization of the
servers p(1-PB_). If we also choose equal 'S
and p.'s, then’all customers, independent of their
types, will incur the same average delay t_. We
also notice that C_ is simply the probability of
an empty system C éP(g), and that it can be compu-
ted by summing a1T the probabilities to one, i.e.,

-1 _ 1 R
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2.2 CP SCHEME

" CP is a degenerate case where actually all the R
queueing systems are independent. The basic egua-
tions describing the behavior of any of the gueues
are well known (see for example [KLEI 76]1). Fur-
thermore each of those systems is equivalent to
CS with only one type of custcmer. Thus, we have
the characterization of CP and of CS. However, we
note that

o {plo= n, = B, i=1,..., R}

vhere B, is the number of buffers reserved for each
type of customer.

2.3 CS SCHEME

We now combine all the individual buffers into a
global pool of size B, (B=RBO). Empty space is al-
Jocated FCFS regardless of the type of arriving cus-
tomer. The above considerations (Egqs. (1) and (2))
lead to ;

R
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Since we have Poisson arrivals, there the probabi-
lity of blocking, PB , is simply the probability of
having B custorers in the system; i.e., PB =C G(B).
The average delay, T, may be determined by fiTst
finding the average nurber of customers of a given
type and, then by -applying Little's result. This
leads to
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0f interest are the 2 cases when p=1 and p==

R 1
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In other words, it is exactly the same as for a
single M/M/1 queue with Bo buffers. This means that
for p=1, CS and CP lead to the same probability of
blocking. This fact will be illustrated in the
figures below.

PEb+1
The above shows that infinite input rates do not
jead to full utilizatiom of the servers, except for
R=1 which is the case of CP. Hence, as opposed to
CP, a non-degenerate CS (i.e., R>1), behaves worse
than CP for o=, and in fact, as we will see below,
it behaves worse than CP for all p>1 and better for

p<l (see Figs, 1,2). This concludes the analysis
of CS.

o> and

p(1-PB) > B/(B+R-1)

2.4 SMXQ SCHEME

Like CS, SMXQ allows the sharing of a pool of B
buffers with a further constraint imposed on the
number of buffers to be allocated to any server, at
any time. Let b be the maximum number of buffers
that can be used by any type of customer; the set
of feasible states becomes

n.<B, 0<n.<b
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Note that the difference between Q(K) and G(K) comes~

which greatly

C =1

c
However, if we assume that each queue is allowed to
occupy more than half of the entire space, i.e.,
b>o/2, thenlwe obtain the following simple expres-

sion” for C

from the added constraint, n.< bi
complicates the evaluation of

B-b-1

3
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The probability of blocking of any type of customer,
say i, is equal to the probability that the entire

space is full or that ny is equal to its maximum b;
this leada to
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The expression for the average delay T is compli-

cated and is not shown here (see [KAMO 76]). We

note the following.

1. if b=B then SMXQ is equivalent to CS

2. if b=B_ then SMXQ is equivalent to CP

3. if R=2" then SMXQ is equivalent to SMA with a
minimum allocation per queue equal to B-b.

This fact will be taken advantage of in the compari-

son of the 4 schemes (below). .

4. If p>> then p(1-PB ), thé
any server does not refich one except for R=1
and R=2. Hence for R>2, (and p«) SMXQ still
«does not provide a full utilization of the ser-
vers. Our next scheme is' motivated by this
deficiency.

utilization of

2.5 SMA SCHEME

Similar to CS, SMA allows the sharing of a pool of
B buffers, of which a buffers are permanently allo-
cated to type-i customers, i=1l, ..., R, As a re-
sult, the set of feasible states becomes

Fd ={p E sup {0, n, -a}<B ,0<n, ;SB+a i=1, ,R}
: 1=

The evaluation C, is based on the partitioning of
the set F, into Subsets .corresponding to known sub-
sets of types of customers which exceed their min-
imum allocations. This leads to
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The probability of blocking of any type of customer,
say r, is €qual to the probability that the shared
buffers (B) are full and that n.o>a,

+D-
a (B P l)pB

p-1
From the above, we note that if a#0 (i.e., non-de-
generate SMA) then: p>~ - p(1-PB,)=1. Hence, as
expected, SMA will always secure full utilization
under heavy load conditions. The expression of the

average delay T is complicated and is not shown here
(see [KAMO 76]).

3. COMPARISON OF THE SHARING SCHEMES
We first compare CP and CS, and then the 4 schemes.
3.1 COMPARISON OF CP AND CS

Fig. 1 illustrates the behavior of the probability
of blocking PB, with respect to p and for a set of
values of R, (R=1,...,4). R=1 corresponds to CP,
R=2,3,4 correspond to the merging of 2,3,4 single
queues. Note that all the curves (with ame B )
meet at p=1 where PB=1/(1+B ). Note also that®for
0<p<1, CS lecads to a smaller PB, hence a better
performance than CP. The improvement is quite con-
siderable for small values of Bo and increases with
R. However, for p2>1, CP shows a slightly better
performance (smaller PB) than CS, namely for small
values of B s

Fig. 2 shows the respective channel utilizations
p(1-PB). Note the loss in limiting throughput (p>)
with CS for the smaller value of Bo'

The average delay curves are not shown here; they
show, for each set (B =4,9),similar behavior as in
Fig. 5. In general, the average delay increases as
more buffers are provided, i.e., as R increases.

3.2 COMPARISON OF THE FOUR SCHEMES

We assume R=2 and B=6. The maximum queue length b
is chosen to satisfy the relation B/2<b<B, i.e.,
b=3,4,5,6. From our previous considerations we know
that b=3 leads to CP, b=4 and b=5 1le

= ad to no X
generate SMXQ, SMA, and b=6 "leads to CS. =

Figs. 3,4 and 5 show respectively the probability of
blocking PB, the channel utilization p (1-PB), the
normalized average message delay uCT, obtained with
the four schemes. With respect to blocking and
utilization, the optimal b (i.e., the optimal
scheme) is a function of p. We note that for small
values of p, b=6 (i.e., CS) is optimal; as p in=
creases b=5 then b=4 (i.e., SMXQ, SMA) become opti-
mal, and finally, for a larger p, b=3 (i.e., CP)
becomes optimal. With respect to the average delay,
it is an increasing function of b.

We conclude that no one scheme is always optimal;
one should select a scheme to fit the particular
operational environment. This study shows sharing
with some restrictions on the contention of space
is certainly more advantageous than no-sharing,
especially when little storage is available.
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