210

27

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 3, MARCH 1986

Broadcast Communications and Distributed Algorithms

RINA DECHTER anp LEONARD KLEINROCK, FELLOW, IEEE

Abstract — The paper addresses ways in which one can use
“broadcast communication” in distributed algorithms and the
relevant issues of design and complexity. We present an algorithm
for merging k sorted lists of n/k elements using k processors and
prove its worst case complexity to be 2n, regardless of the number
of processors, while neglecting the cost arising from possible con-
flicts on the broadcast channel. We also show that this algorithm
is optimal under single-channel broadcast communication. In a
variation of the algorithm, we show that by using an extra local
memory of O(k) the number of broadcasts is reduced to n. When
the algorithm is used for sorting n elements with k processors,
where each processor sorts its own list first and then merging, it
has a complexity of O(n/k log(n/k) + n), and is thus asymp-
totically optimal for large n. We also discuss the cost incurred by
the channel access scheme and prove that resolving conflicts
whenever k processors are involved introduces a cost factor of at
least log k.

Index Terms — Access scheme, broadcast, complexity analysis,
distributed algorithm, merging, parallel algorithms, sorting.

I. INTRODUCTION

ONSIDER the following algorithm for finding the

maximum of a set of k distinct, numerically valued ele-
ments where each element is stored within a separate pro-
cessor. When the algorithm begins, each processor attempts
to transmit its own value using a common broadcast channel
to which all processors listen. However, only one processor
is enabled (permitted) to transmit by means of some access
scheme (conflict resolution scheme). Each processor com-
pares its value to the largest value transmitted so far. All
processors that have a larger value try again to broadcast their
own values, etc. The algorithm terminates when all pro-
cessors have either transmitted their values or have “given
up,” which is detected by silence on the channel. The last
element to be broadcast is the maximum.

This admittedly simple algorithm (referred to as the
“Max-Algorithm” and also presented in [16]) demon-
strates how a distributed algorithm can utilize broadcast
communication. The term broadcast implies the existence
of a single channel on which only one node (processor) can
transmit at one time, while all the others receive the message
simultaneously.

“Algorithms by broadcasting” have not received much
attention in the literature on parallel and distributed algo-
rithms. An earlier report by the authors [8] was among the
first discussions of such algorithms and those results consti-

Manuscript received July 13, 1983; revised October 4, 1985. This work was
supported by the Defense Research Projects Agency under Contract MDA 903
82-C-0064.)

The authors are with the Department of Computer Science, University of
California, Los Angeles, CA 90024.

IEEE Log Number 8407299.

tute a portion of the current paper. Other contributions,
appearing at around the same time, are [15] and [16]. In this
introduction, we survey the motivation for using broad-
casting as a model for distributed computation, point out its
unique features, summarize relevant work and point out our
contribution.

In the area of parallel algorithms, the closest thing to
broadcasting is the assumption of the existence of a global or
shared memory from which all the processors can simulta-
neously read the same value [5],[20]. However, shared
memory models usually do not place any limit on the number
of memory cells which are used by the processors. In the
context of broadcasting, this would mean that there is more
than one broadcast channel and that each processor can use
any channel according to the requirements of the algorithm.
In most broadcast-based networks (e.g., local area networks
[18]), there is only one channel shared by all processors.
Therefore, most of the results for shared memory models are
not applicable to broadcasting. An example in which the
results are appplicable is the search algorithm presented by
Snir [20] using the CREW (concurrent read, exclusive write)
model which utilizes only one memory location.

A major difficulty in using broadcast communication is the
issue of access to the channel. Many access schemes have
been proposed and analyzed [22]. The focus of most papers
is on how to increase channel capacity and on the tradeoff
between throughput and delay. Clearly, the access scheme
may have a significant impact on the complexity of the algo-
rithm. We will approach this problem through two models. In
both models, processors broadcast one value at a time on a
channel shared by all of them. Only one message will be
posted at a slot on the channel, and all processors can read the
posted message. In our first model, named IPABM (ideal
parallel broadcast model), we assume that some “ideal”
access scheme exists, i.e., if several processors demand the
use of the channel at the same time, there is a global mech-
anism which enables one of them to transmit in a constant
time. Later it is refined into a “more realistic” model,
RPABM (realistic parallel broadcast model), that incorpo-
rates a conflict resolution protocol (CRP), and we discuss
two specific access schemes and their influence on the time
complexity of the algorithms.

The vehicle we use to study algorithms by broadcasting is
via “comparison-based” algorithms (sorting, searching,
etc.). Parallel versions of these algorithms have been exten-
sively studied under various models of communications
[21, [3], [51, [7], [19]-[21], [23], [24], and therefore, they
are well-suited for studying the power and limitations
of broadcast communication. For a review of sorting algo-
rithms, see also [9].

0018-9340/86/0300-0210$01.00 © 1986 IEEE

DECHTER AND KLEINROCK: BROADCAST COMMUNICATIONS AND DISTRIBUTED ALGORITHMS 211

Relevant work in the area of broadcast algorithms includes
the work by Levitan [15], who uses a PBM (broadcast proto-
col multiprocessor) model which is identical to our IPABM,
and who obtains results similar to those given in the current
paper; in particular, hie presents a sorting algorithm which is
identical to our second version of the merge algorithm when
all processors have just one element. In addition, he gives an
algorithm for finding a minimum spanning tree in a graph.
Algorithms for finding the extrema in a broadcast model are
presented in [16] and [4]. The latter uses a mixed model that,
in addition to the conventional links, also allows a global bus
for broadcast communication.

The main contributions of this paper are: an efficient algo-
rithm for merging, proving its optimality, and dealing in a
formal way with issues that emerge from the use of broad-
casting as a model for distributed computing. In particular, in
the analysis we take into account both the communication
cost (time to broadcast a message) and the computation cost
(time for performing a comparison). We also discuss the
overhead introduced by different access schemes.

In the next section we present our model, discuss complex-
ity issues and analyze the performance of the Max-algorithm
discussed above. In Section III we present an algorithm for
merging k sorted lists of n/k elements each. We show that the
worst case performance of the algorithm is independent of the
number of processors (which is also the number of lists), and
is bounded from above by 2rn — 1 broadcasts and the same
number of comparison stages. A comparison stage is one
time slot in which several processors in parallel perform one
comparison. In a variation of this algorithm, we show
(Section I1I-C) that an additional O(k) storage in each pro-
cessor can reduce the number of messages broadcast to n.
Using the merge algorithm for sorting »n elements with &
processors (Section I1I-D) yields a worst case time complex-
ity of O(n/k log(n/k) + n). Thus, for large n, the Merge-
sort algorithm achieves an asymptotic speedup ratio of k with
respect to the best sequential (i.e., single processor) algo-
rithm whose complexity is O(n - log n). In Section 1V we
show the optimality of the Merge-algorithm by proving that
any Merge-by-broadcast algorithm requires n broadcasts.
Section V addresses access scheme issues.

II. THE IPABM MODEL AND COMPLEXITY MEASURES

The model which is used through most of the paper is
presented next. Let us define an IPABM as a collection of
processors which compute in parallel synchronously and
which communicate via a single broadcast channel. The
channel is slotted into time slots of size T (where T is the time
for a message transmission). At each step, each processor can
read the message in the current slot on the channel, do some
computation and submit a message to be broadcast in the next
time slot. Any number of processors can read the current
message on the channel but only one message among those
submitted for transmission will be chosen by the global ac-
cess mechanism to be broadcast in the next time slot. An
empty slot indicates that no processor wants to talk.

The complexity of an algorithm will be measured by its
computing time and its communication time. Dealing with

comparison-based algorithms, we consider a comparison
operation as the basic computation step and the broadcast of
a message as the basic communication step. Thus, the
“number of comparisons” (#comparisons) performed in par-
allel and the “number of broadcasts” (#broadcasts) charac-
terize the computation time and broadcast time, respectively.
Let ¢ be the time for a comparison operation (since the algo-
rithms we consider are synchronized the analysis does not
take into account variations in computing time among pro-
cessors). The above two measures are combined as follows:

T(A) = t + (#comparisons) + T - (#broadcasts) (1)

where T(A) stands for the worst case time complexity of
algorithm A. By T(A) we denote the average time complexity
of algorithm A over all problem instances.

In the Max-algorithm each broadcast is followed by one
comparison operation performed in parallel by some of the
processors. Therefore, it is sufficient to account only for
#broadcasts as the measure of complexity.

Let T(Max(k)) be the number of broadcasts performed by
the Max algorithm with k elements and k processors. On
some input instances Max(k) will require each element to be
broadcast and thus,

T(Max(k)) = k. (2)

The average number of broadcasts, T(Max(k), obeys the
following recurrence:

k
T(Max(k)) = —}(E T(Max(k — 1)). (3)
i=1
The last is true since if the first element to be broadcast is the
ith smallest element, then exactly i — 1 among the rest of the
k — 1 processors will remain silent and will not participate
in the rest of the algorithm. We assume a homogeneous distri-
bution of the elements among the processors and thus the
above event has probability 1/k and the recurrence follows.
(3) can be written as

TMax(D) = 5: TMax() @)

PR
k

with T(Max(0)) = 0, T(Max(1)) = 0. Solving this recur-
rence yields
k=1

T(Max(k)) = log k. ®))

k1
i=1 k

The same results were obtained in [16] using a slightly differ-
ent analysis.

1II. PARALLEL MERGE BY BROADCAST

A. Description of the Algorithm

We present a distributed algorithm that merges k sorted
lists of n/k distinct elements into a decreasing series, using
an IPABM with & + 1 processors. Each of the first k pro-
cessors contains one of the lists and each has an identity (id#)
and a local memory. The size of local memory is fixed and not
dependent on k or n. For simplicity we designate the (k + 1)

212

processor to be the “output processor” (the one in which the
output will be stored). All processors cooperatively par-
ticipate in the task of merging the sorted lists they possess.
The maximum element in each processor’s list is called its
“current value.”

The algorithm can be decomposed into cycles. In each
cycle the maximum of the current values is determined. This
element is broadcast to the output processor as the next ele-
ment in the merged list, and is removed from the processor to
which it belonged (the processor updates its current value).
Each cycle is implemented by the Max-algorithm presented
earlier. The processor that broadcasts first is the initiator of
the cycle; the last is the terminator of the cycle. During the
cycle, processors try to broadcast their current values as long
as they have not yet heard a larger value being broadcast. In
order to eliminate redundant broadcasts, there will be some
dependency between the initiations of cycles.

When a processor succeeds in broadcasting its current
value, it denotes the value which is broadcast immediately
afterwards as its successor. The successor value is updated
each time the current value is rebroadcast. When the current
value is the terminator of the cycle, it has no successors. The
current value is the predecessor of its successor. Each current
value will have at most one successor at any given time (it
may have none, if it was not broadcast yet). It will also have
at most one predecessor. In terms of this terminology, the rule
for cycle initiation is as follows: a processor initiates the next
cycle (by rebroadcasting its current value) if the present cycle
was terminated by a successor to its own current value. If
there is no predecessor, the next cycle can be initiated by any
processor.

In order to implement the above algorithm in a distributed
fashion, processors must be able to detect the end of a cycle
and its terminator, and to determine whether or not they
should initiate the next cycle. The end of a cycle is deter-
mined by silence (i.e., an empty time slot). The initiator of
a cycle is determined by the successor—predecessor re-
lationship, as described earlier. Two empty slots in succes-
sion indicate that a cycle is terminated but that a specific
initiator does not exist, in which case all processors try to
initiate the next cycle.

The algorithm for each processor is described in Fig. 1.
While listening to the channel, a processor can recognize one
of the following three cases. A value is broadcast in the
current slot (case 1), or the current slot is empty but the
previous one holds a value (case 2), or two consecutive empty
slots have occurred (case 3). In cases 2 and 3 a cycle has
terminated and an initiator must be determined. We assume
that each processor has a procedure for determining the ter-
minator of a cycle which is used in case 2. The procedure
process-update is used each time the processor has success-
fully broadcast its current value, CV. It determines whether
the value is also the terminator of the cycle, or whether the
successor value, SUCC, should be updated. If it is the termi-
nator, the value at the top of its list is removed and the value
of CV is updated to be the new maximum on its list. The first
broadcast of each current value may terminate the cycle in
which it participated. If it did not, this value will be rebroad-

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 3, MARCH 1986
main
begin
/*initialization */
CV <- the maximum value in list
SUCC <- nil
TERM <- nil
BV <-nil
repeat
BV <- read next msg
1. if BV is not empty then
if CV > BV then broadcast CV
if successful then call process_update
2. ifBV=empty then /*acycle is terminated*/
begin
TERM <- terminator of the cycle
if TERM = SUCC then
broadcast & call process_update
end
3. ifheard two empty slots then try to broadcast CV
if successful then call process_update
until list is empty
process_update
begin
BV <- read next msg
if BV = empty then
begin
remove CV from list
if list is empty CV <- NIL else
CV <- next element in list
end
else
SUCC<- BV
end

Fig. 1. The Merge-algorithm.

cast only for initiating future cycles until it will terminate
one. Then, the current value is updated and the processor
tries to broadcast the new current value for the first time. A
formal proof of this behavior is given later.

It is convenient to trace the execution of the algorithm
using a global work stack in which the values being broadcast
are recorded. The work stack could also be kept in each of the
processors and thus be used to control the algorithm (see
Section III-C. Here it is utilized only to explain the rule for
cycle initiation.

Consider the following example. Suppose we have n = 8,
k = 4 and the initial situation is as follows:

63| (79| |84| |66
54| [64] [75] L65]
Pi Pz Pq P4

The execution of the algorithm is traced in Fig. 2. For each
cycle we give the sequence of (processor, element) pairs in
that cycle, the element determined to be the next in the
merged list (i.e., the output list), and the contents of the
working stack. The algorithm is initiated by processor P, and
we assume that access right is given to the processor with the
smallest identification number among those that want to talk.
The termination of a cycle is detected by an empty time slot.
Broadcast elements are pushed into the work stack as they
are heard. The Max element is popped from the work stack
and joins the output list. The next cycle is then initiated by the
top element.

In the first cycle, 84 is determined to be the Max element.
It is removed from the list of processor Ps, the highest ele-
ment of which then becomes 75. The second cycle is initiated
by processor P, since it broadcast immediately before Py in
cycle 1, and so on. The mechanism of a work stack suggests
that rebroadcasting the element that initiates a cycle by a
processor could be avoided altogether, since the processors
already heard that value and they can memorize it. Indeed,

DECHTER AND KLEINROCK: BROADCAST COMMUNICATIONS AND DISTRIBUTED ALGORITHMS 213

WORKING OuUTPUT

STACK LIST
84 | =—popped 84
cycle 1: (P,,63) (P,.79) (P3,84) { O 79 | =—init
output: 84 |63
cycle 2: (P,.79) { Bt | 79 | =—popped 84
output: 79 63 | <+—init 79
75 | =—popped 84
cycle 3: (P,,63) (P,,64) (P5,75) (] 64 | =—init 79
output: 75 163 75
66 | =—popped 84
cycle 4: (P,.64) (P,,66) | 64 | =—init 79
output: 66 163] 75
66
65 | =—popped 84
cycle 5: (P,,64) (P4.65) — 64 | =—init 79
output: 65 63 75
= 66
65
64 | =—popped 84
cycle 6: (P,.64) J output: 64 63 | <—init 79
75
66
65
64
84
cycle 7: (P,,63) i output: 63 63 | =—popped 79
75
66
65
64
63
84
cycle 8: (P,.54) (S | output: 54 54 | <popped 79
75
66
65
64
63
54
Fig. 2. The execution of Merge-algorithm on an example problem.

this is the basis of the improved Merge-algorithm to be de-
scribed later.

B. Correctness and Complexity Analysis

The correctness of the algorithm follows immediately from
the following three facts.

1) The first element in each list is the largest in that list at
all times.

2) In each cycle the maximum of all the first elements is
determined.

3) The determined maximum is removed from its list and
added to the output list.

In the complexity analysis we calculate only the number of
broadcasts performed, since each broadcast is followed by a
comparison stage. We show that the worst case complexity
is 2n — 1. In order to prove this, we consider the following
two lemmas.

Lemma 1: Let CV; denote the current value of processor
P,. Whenever CV; is rebroadcast after the first time, it ini-
tiates a cycle.

Proof: Assume to the contrary that the claim is not
correct. There is, therefore, a situation in which a processor,
that had already broadcast its current value, later hears a
smaller value on the channel. The processor, in response,
will rebroadcast its current value. Also, any current value
that was broadcast must have a successor value, and that
successor is larger than itself. Consider the first cycle in
which this situation occurs and let CV; be the largest among

the already-heard current values at the time of this cycle that
hears a smaller value on the channel (case 1 in the algorithm).
Let CV; be the successor of CV; at that time (any current value
that was broadcast must have a successor). This successor is
larger then CV; and, therefore, it is also larger than the value
on the channel. However, since we picked CV; to be the
largest one with this property, we get a contradiction.]

It follows that from the time an element is first broadcast
until it is merged, only values greater than or equal to itself
can be broadcast. Let #V,; be the number of times element V,
is broadcast. The lemma implies that if #V; > 1 then V;
initiated at least #V; — 1 cycles. From Lemma 1 we can
conclude also that there is at most one predecessor to each
current value. The reason is that a value is determined as a
successor only during its first transmission (it cannot be the
initiator of that cycle). Therefore, it will be a successor to
only one current value.

Lemma 2: Each time V; initiates a cycle (except for the
last cycle which includes only V;), the cycle is terminated by
an element that has never been broadcast before.

Proof: Assume #V; > 2. We arbitrarily choose the
cycle which is initiated by the mth broadcast of V; (1 <
m < #V;). Let the cycle be terminated by an element
denoted u?. If u" participated in an earlier cycle, it must
initiate all other cycles in which it participates (according to
Lemma 1), which leads to a contradiction. O

This lemma implies that with each broadcast of V;, exclud-
ing the first and the last, we can associate a distinct element
which is broadcast just once. This element is removed imme-
diately after it is broadcast. Since no two distinct elements
initiate the same cycle, we can partition the set {V, -+, V,}
of all elements into disjoint subsets M = {S,,5,, ", S}
such that each subset S; either consists of a single element,
which is broadcast once or twice, or S; consists of m ele-
ments, one of which V; is broadcast m + 1 times and the
other m — 1 elements are those which terminate each of the
m — 1 cycles initiated by V;. Thus:

) Vi,jS NS =

2) if |S;| = m, then the total number of broadcasts, B(S;),
by elements in S; satisfies B(S;) = 2m.

This leads to the following theorem.

Theorem 1: Let T(n, k) be the number of broadcasts per-
formed by the Merge-algorithm. T(n, k) satisfies

n<Thnk =2n—1. (6)

Proof: ltisobviousthatn = T(n, k) since each element

has to be broadcast at least once. Also

T(n,k) = 2, B(S) = 2 2|S| =2n @)

SiEM SEM

since the element which terminates the first cycle is broadcast
just once. We are left withn — 1 elements for which we have
shown in (7) that the upper bound for their total broadcast
time is 2(n — 1), which yields

Tn,K) <2(n — 1)+ 1=2n—1. 0

214

C. AnlImproved Merge-Algorithm

As mentioned earlier, it is possible to decrease the number
of broadcasts required by making the initiation and termi-
nation of a cycle more sophisticated. However, these savings
require a larger local memory for each processor.

In the modified version, each processor stores all the ele-
ments that were broadcast in a stack called wstack (as we did
in the example). The initiation of cycles by elements that
were broadcast before will be avoided altogether, since this
information exists in the wstack of every processor. Each
cycle now begins by broadcasting the second element relative
to this cycle in the original algorithm, and cycles with one
element will now reduce to empty cycles.

At the beginning of a cycle each processor compares the
value at the head of its list to the top element in the wstack
and decides to broadcast only if its value is larger. The rest
of the cycle proceeds in the same manner as in the previous
algorithm, where each processor pushes values onto its
wstack as it hears them. At the end of a cycle (determined by
an empty slot), each processor pops the top element from its
wstack. Any consecutive empty slot following the first corre-
sponds to an empty cycle (a cycle of 1 element in the previous
algorithm). For each such empty, slot a processor pops its
wstack and this value joins the merged list. When a wstack is
empty but its list is not, the processor knows that the initia-
tion of a cycle by a value which was never broadcast before
is called for.

The number of broadcasts required by this algorithm is
exactly n. Each element is broadcast just once. The number
of comparison stages, however, remains the same as before.
Note that the new algorithm requires that each processor
maintain a stack of size O(k), thus presenting a tradeoff
between the number of broadcasts and the size of local
memory.

In the rest of this paper, whenever we talk about the
“Merge-by-broadcast” algorithm, we mean the first version,
unless otherwise specified.

D. Sorting algorithms

The Merge-by-broadcast algorithms can be used to sort n
elements with k processors with IPABM by initially having
each processor sort its own list, using some efficient se-
quential algorithm (such as quicksort or sequential Merge
sort [1]). The merging phase is performed by our Merge-by-
broadcast algorithm. Let us call this sorting algorithm Broad-
Sort(n, k).

Theorem 2: The complexity of Broad-Sort(n, k) is given
by:

T(Broad-Sort(n, k)) = (% log% +2n — 1)t

+(@n-1T = 0(% log% P ()

Proof: Here we use the combined measure of per-
formance that accounts for both comparison time and com-
munication. The theorem is proved as follows:

(n/k log n/k) is the number of comparisons required to
sort each list.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 3, MARCH 1986

(2n — 1) is the number of comparisons for merging.

(2n — 1) is the number of broadcasts. O

The maximum number of comparisons required for sorting
a sequence of n elements on a sequential processor is asymp-
totically n log n. Therefore, when k is smaller than log n the
asymptotic speedup ratio of the optimal sequential algorithm
over the above algorithm is k, which is optimal. However,
when k is greater than log n, the total execution time required
is asymptotically linear in n. Formally, the speedup ratio
between sequential sorting and this Merge-Sort algorithm is
greater than

k
k
log n

When the improved Merge-algorithm is used to sort n
elements with n processors (k = n), then we get the algo-
rithm described by Levitan [15]. This algorithm uses exactly
n broadcasts and 2n comparison stages. In this case (when
k = n), the number of comparison stages can be reduced to
n by having the elements which were not transmitted yet keep
a pointer to their relative order in the wstack. Each processor
can do that with no extra cost since they listen to the channel
anyway. In that case, when a new cycle begins with the top
element in the wstack, the elements know their relation to it
and they do not need to make the comparison.

This argument cannot be extended to the Merge-algorithm
since the elements that are updated to be the new current
values were not compared to the values that were broadcast
already.

Another way to sort n elements with n processors is as
follows. Each processor broadcasts its value ina prespecified
order. Each processor listens to the channel and remembers
the value of its immediate successor in the list. After n broad-
casts, all processors are linked in the order of their values. In
the next phase, the processors will broadcast their values
again according to the order dictated by the linked list. The
first will be the Max value (the one with no successors). This
algorithm uses 2n broadcasts and n comparison stages. Its
advantage over Levitan’s algorithm is that there is no con-
tention on the channel and, therefore, in the RPABM model
(to be discussed later), no extra cost will have to be paid
for accessing the channel. This algorithm cannot be ex-
tended to a Merge-algorithm (at least notin a straightforward
way) without increasing the number of comparison stages
significantly.

Lt

IV. OPTIMALITY OF THE MERGE-ALGORITHM

In this section we establish a lower bound on the perfor-
mance of all Merge-by-broadcast algorithms when the only
criterion is the number of broadcasts performed. Con-
sequently, the above Merge-algorithms are shown to be opti-
mal since they meet this bound.

We consider all possible Merge-algorithms using the
IPABM to merge n distinct elements drawn from a set S on
which an order is defined. The n elements are grouped into
k sorted lists each with n/k elements. There are k processors.
each containing one of the sorted lists. The output is obtained

DECHTER AND KLEINROCK: BROADCAST COMMUNICATIONS AND DISTRIBUTED ALGORITHMS 215

in an independent processor (the output processor). We claim
that any algorithm that merges the lists requires at least n
broadcasts. More specifically, it requires that each of the
elements will be broadcast at least once.

This claim might seem trivial since for the output processor
to create the merged list it must hear all the values! However,
if we reformulate the requirement such that the output pro-
cessor need not know the actual values but simply their order,
the claim is less obvious. Formally, let V; be the jth element
in processor P; (or the jth element in the ith sorted list) and
v, be the value of the element in this location for a given input
of n elements. The output processor should be able to give,
for each input, a series of locations V; ; Vi, """,
Vi, "V, such that the sequence of values v, ,
Vigis ™" -, V., is the final merged list. From what
we will show it follows that the values themselves are also
available at the output processor. First we prove our claim for
the special case of n lists having 1 element each.

Lemma 3: To merge n lists of 1 element each with
IPABM and using n processors, each of the elements must be
broadcast.

Proof (sketch): Any two elements which are adjacent in
the sorted list must be compared directly. Let a;, a;.| be two
consecutive elements. The order between these two elements
and the rest is exactly the same, thus, to determine their
internal order they must be compared directly. Since a; and
a;., are located in different processors and the outcome of the
comparison must be available at the output processor which
does not know them initially, both values must be broadcast.
Each one of the processors, including the output processor,
can then compare and determine the order between the two
elements. It might be argued that it is sufficient to have one
processor broadcast its value and the other only indicate
whether it is larger or smaller; however, we count all mes-
sages in the same way and since the broadcast of the value
gives more information we assume the values themselves are
transmitted. We can conclude that since there are n — 1
adjacent pairs, n — | comparisons are required, each corre-
sponding to two broadcasts. Since n — 2 of the elements
participate in two adjacent pairs the number of broadcasts
required is at least

2 —1)—(n —2) =n. 9)
]

In the general case, each processor has n/k sorted ele-
ments. As argued earlier, any adjacent pair of elements must
be compared. If two adjacent elements are in the same pro-
cessor, it is not necessary to broadcast both elements in order
to make a comparison (a processor can make the comparison
and then just broadcast the result in some coding or broadcast
only the larger value). However, it is possible to create an
input for which no two adjacent elements are located in the
same processor. Fig. 3 illustrates such a case. Let a, >
a,,* ", > a, be the sorted list. The list of elements in pro-
cessor P, (1 =i =k)is a;,aix," " Qispn—1). Lhus, any
comparison between adjacent values requires that both of
them be broadcast. This yields the following theorem.

Theorem 3: Any Merge by broadcast algorithm, using
IPABM, with n elements and & lists (k processors), requires

4 s Ui,j,! .

Pl PZ Pl' Pk

a, a; ay

x4 Qx4 an
Fig. 3. A worst case example.

n broadcasts in the worst case if the output is accumulated in
a separate output processor. o

It is easy to show that when the output processor is a
processor which contains one of the lists, the lower bound
decreases to n — n/k broadcasts (the output processor need
not broadcast its own values).

From Theorems | and 2, we conclude that the Merge-by-
broadcast algorithm presented in Section III is asymp-
totically optimal w.r.t. number of broadcasts, while its modi-
fied version is absolutely optimal.

V. ACCESS SCHEME CONSIDERATIONS

So far in our discussion we have assumed the existence of
an “ideal” access scheme that resolves all conflicts in con-
stant time. Even if such an access scheme is not available,
this assumption is appropriate when the algorithm itself is
designed so that conflicts never arise (i.e., in each time slot
at most one processor is enabled) as in the last sorting algo-
rithm in Section III-D. If the algorithm is not designed in this
way, conflicts between processors will generally arise and
the access scheme used may have a profound effect on the
complexity of the algorithm.

Numerous access schemes have been proposed and ana-
lyzed [6],[10]-[13], [22] in the context of broadcast commu-
nications. The measures that are used for evaluating their
performance are those of channel capacity, throughput
and delay. Of most interest to us is capacity; in particular,
we are interested in the ratio between the time the channel is
used for conflict resolution and the time it is used for “useful”
communication.

We now modify our ideal model to include these access
considerations. Let RPABM be an IPABM with the follow-
ing changes: the channel is slotted into two types of time
slots, one of length T for message transmission and the other
one of length 7. The RPABM has a conflict resolution proto-
col, CRP, which substitutes for the global access mechanism
in IPABM. The CRP is invoked whenever a conflict arises
and it uses a 7-slotted channel. A T slot carrying a trans-
mission marks the termination of CRP. Usually, 7 << T.

The communication time of an algorithm with RPABM
now includes the number of T slots required for real trans-
missions and the number of 7 slots used by the CRP. Let
#T, #7, be the maximum number of 7 slots and the maxi-
mum number of 7 slots, respectively, used by algorithm A for
broadcasts and for resolving conflicts given a specific CRP.
The worst case communication time for algorithm A with

CRP, denoted by Comm(A, CRP), is defined as
Comm(A,CRP) = #T - T + #7-71. (10)

Since 7 << T, the contribution of the second term (the cost
of accessing) might be negligible for some specific parame-

216

ters of the problem. However, for the asymptotic complexity,
7 cannot be ignored. The ratio #7/#7T characterizes the
impact of the access scheme used on the asymptotic complex-
ity of the algorithm. Specifically, if #7/#T = O(f(k))
where f(k) is a nondecreasing function of k£ (the number of
processors), then it is easy to see that

Comm(A, CRP) = O(#T - (f(k) + 1)). (11)

In the next two subsections we present the “Merge-by-
broadcast” algorithm using two realistic access schemes:
MSAP (mini-slot alternating priority) [11] and the Tree-
algorithm [6]. Following that, we give some lower bounds
for CRP performance.

A. Merge with MSAP

In the MSAP scheme, processors obtain permission to
broadcast according to some predetermined priority order
among them which is dictated, for example, by their id’s.
Processors may broadcast one after the other in a round robin
fashion, and when a processor has nothing to say, its turn is
passed to the next in order after an empty 7 slot. When it does
broadcast it uses a T slot, and then gives the turn to the next
processor. This is similar to a token ring.

This method is very appealing for the Merge algorithm
since we have cycles built into it in which each processor
might want to transmit once. Thus, integrating the access
scheme into the Merge algorithm is straightforward: pro-
cessors are ordered in increasing order of their id’s. Any
cycle of the algorithm is initiated by its initiator if the algo-
rithm determines one. Otherwise, P, is the initiator. If P; is an
initiator of a cycle then the next one that can talk is P;,, and
then P;,, and so on, until the end of the cycle. A processor
determines when its turn comes by detecting the end of a
cycle, by knowing the initiator’s id and by counting the num-
ber of 7 and T slots that occurred.

In Fig. 4 we show how the algorithm works with MSAP
using the same input as in Fig. 2. Note that we do not need
an extra time slot to determine the end of a cycle with this
CRP. The empty slots are of length 7 and are denoted by
“1L—,” the full slots are of length 7. We next determine the
communication complexity of the Merge-algorithm with the
MSAP CRP.

Theorem 4: For any instance I of Merge(n, k) with
RPABM when CRP is MSAP, the number of 7 slots used #7
satisfies

n-(k—-1)

> sS#r=n-(k-1).

(12)

Proof: Since the number of cycles is n and in each cycle
we can have at most k — 1 empty 7 slots (when there is just
one transmission, for example) there are at mostn - (k — 1)
7 slots, i.e.:

#r=n-(k-1).

We now determine the lower bound. An element is added to
the Merged list when it terminates a cycle. To determine if a
cycle is terminated by an element of processor P, k — i
empty 7 slots must pass by. Since there are n/k elements in

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 3, MARCH 1986
output:
cycle1: (P;,63) (P,,79) (P3,84) Losot el 84
cycle 2: (P,,79) [L R 79
cycle 3: (P,,63) (P,,64) (P3,75) | =l 75
cycle 4: (P,,64) Hieine| (P,4,66) e 66
cycle 5: (P,,64) L1 (P65 - 65
cycle 6: (P,,64) | — S S——— 64
cycle 7: (P63 L (=23 [gl 63
cycle 8: (Py,54) el i3 ad (BTN e b 54
Fig. 4. Example of Merge with MSAP.

processor i and each terminates a cycle once, we have

Sk - i) = _j],:_'i’f_:_L)_

e B (13)
k i=1 i=0 2

O

We can conclude that using MSAP we have #7 =
O(n - k). Altogether

Comm(Merge(n, k), MSAP) = 2n — 1) T + (n - k) - 7
=0 k). (14)

Note that

#T

Thus, the asymptotic complexity increased by a factor of k;
this is substantial when & is not a constant but rather a func-
tion of n.

= 0(k). (15)

B. Merge with the Tree-Algorithm

To apply the MSAP access scheme to the Merge-algorithm,
we took advantage of the structure of the algorithm and its
decomposition into cycles. The access scheme resolves con-
flicts for each cycle of transmissions and not for each trans-
mission independently.

Our approach in the following scheme is to consider each
conflict independently without acquiring information from
previous conflicts or previous steps of the algorithm. When-
ever a conflict occurs, the CRP is invoked and gives the right
to transmit to one of the involved processors. The question
we want to address is: Given k processors that want to trans-
mit, how many time slots (for conflict resolution) are needed
until one of the processors succeeds in broadcasting (this is
essentially the well-known election problem in distributed
computing). Greenberg [10] addresses similiar questions;
however, none of them is identical to our question and there-
fore, none of his results are the same. For instance, he consid-
ers the problem of having k processors that want to talk in the
same slot, and provides a probabilistic protocol which, on the
average, enables all the £ messages to be posted in time O(k).
In our case however, the situation changes after each success-
ful broadcast, namely, if a processor wanted to talk and
another processor was chosen to broadcast, it may not want
to talk after it heard the broadcast message.

We apply Capetanakis’ tree algorithm [6] to resolve con-
flicts using, again, the processor id’s. The Tree-CRP is de-

DECHTER AND KLEINROCK: BROADCAST COMMUNICATIONS AND DISTRIBUTED ALGORITHMS

Tree(r,j) /*executed by processor P;*
while you want to talk Do

broadcast in the next time slot
if no collision then broadcas((nd end

elseihsis[—%ijlhenTme ,[I—;LJ

else if the next t-slot is empty then Tree [L%L])]

endwhile

Fig. 5. The Tree-CRP.
scribed by the recursive procedure Tree (r,j) in Fig. 5.
Whenever a processor wants to transmit, the procedure Tree
(1,k) is invoked where k is the number of processors.

All processors try to broadcast in the first slot. If there is
a collision, only those with indentification numbers less than
k/2 try to transmit again. Another collision enables only
those processors with id#’s < k/4 to transmit, and so on,
until a successful transmission or an empty slot occurs. The
latter event activates another subset of processors to keep
trying in the same manner. The CRP uses a sequence of
slots which are either collision slots or empty slots, and
terminates by a successful transmission, i.e., by a T slot.

Resolving one conflict using the Tree-algorithm may re-
quire 2 - log k slots in the worst case. The scheme can be
easily modified to take only log k 7 slots by noticing that an
empty slot implies a collision in the subsequent slot and can
therefore be skipped.

Theorem 5: The number of 7 slots required by the
Merge(n, k) algorithm in its two versions, with RPABM
when the Tree-CRP is used, satisfies #7 < n - log k.

Proof: The number of broadcasts in the improved algo-
rithm is n. In the first version of the algorithm there are 2n
broadcasts, but only the first broadcast of each value may be
involved in conflicts on the channel. In subsequent broad-
casts the value initiates a cycle in which case it is the only one
to access the channel. Therefore, for both versions of the
Merge-algorithm there are n broadcasts that may be involved
in a conflict. Since log k 7 slots are used for solving the
conflict, the claim follows.]

We conclude that using the Tree-CRP and the first ver-
sion of the Merge-algorithm, the communication time is as
follows:

Comm(Merge(n, k), Tree—CRP) =

(2n—l)°T+n-logk-T=0(nlogk). (16)
In this case,
-
T O(log k). (17)

We now show that any algorithm for conflict resolution can
do no better than the Tree-CRP. First, we introduce some
formalism. Let a conflict resolution protocol, CRP, for a set
of k processors {1, - - -, k} be a function from the power set
of {1, ,k}tothe set{l,- - k}. The CRP determines, for
any subset of conflicting processors, one processor that
can talk.

The execution of CRP for any subset of processors is over
the 7 slotted channel where each slot is either an empty slot
or a conflict slot. The last slot is of length 7. The sequence of
empty slots and conflict slots up to but not including the

217

T slot could be considered the encoded information by which
CRP selects a specific processor. Note that a processor does
not know which subset is currently being worked on by the
CRP, but only whether or not it belongs to this subset. Let
C(S, x) be the binary code (i.e., the sequence of empty and
conflict slots) which result when all processors in a subset of
processors § want to transmit, and x is the first which suc-
ceeds. Two properties are required from any CRP.
1) IfCRP(S) = x where S is a subsetof {I,2, - - - , k} then
x ES.
2) If §,, S, are any two subsets such that x € Sy NS, and
if
CRP(S|) =%
and
CRP(S;) =y # x
then
C(Sl,x) # C(SZ’ ,V) .

Let /(CRP) be the maximum code length of a CRP.
Theorem 6. For every CRP defined over a set of k ele-
ments, /[(CRP) = log k.
Proof: For any given CRP we create a special family of
subsets of processors

CORE(CRP) = {5, 8,," "+, 5}

in the following recursive way:

8 =1, 1
Sinr = 8 = {x;}
where
x; = CRP(S;).
Obviously,
Sk C Siy € +:48, T S5,.C 8,
also,

CRP(S;) # CRP(S)).

We now show that the code sequences for CRP(S;) are all
different. That is:

Vi,j C(S;,x;) # C(S;, x;) .
Suppose this is not true and for some i, j
C(S:i, x;) = C(S;, x;)
where j > i. Then
$; 25, >x5€ES,.

Thus, x; € §; N §; with CRP(S;) = x; and CRP(S;) =
xi # x;, but C(S;, x;) = C(S}, x;) which contradicts property
2 of the CRP. This proves that every CRP must create at least
k different binary codes which is known to require log k
binary slots. o

We see that any deterministic CRP does add a complexity
factor of log k for every broadcast that enables more than one

218

processor. It can be shown that even when we limit the size
of conflicts to only two out of the k processors, the worst case
complexity of any CRP is still log k. The argument goes as
follows. In the case of a conflict, a CRP assigns a subset of
the processors to talk in the first time slot and the other to be
silent. If there is exactly one processor talking, the conflict
is resolved and the CRP stops. Otherwise, in the case of a
collision, a subset of the colliding processors can be chosen
for the second time slot. If there was silence in the first slot,
a subset of the remaining processors will be selected for the
second time slot, etc. In the worst case, the two colliding
processors can always be in the subset which is larger in each
step of division, therefore, only after log k steps (there are
k processors) the CRP will stop. This argument provides
a different proof to Theorem 6 as well. This suggests ap-
proaching the design of broadcast algorithms in a way that
minimizes the number of broadcasts that can result in conflict
or not to allow conflicts at all.

VI. CONCLUSION

In this paper, we addressed issues of design and complex-
ity involved in incorporating “broadcast communication”
into distributed algorithms. We presented algorithms for
merging k lists of n/k elements each by k processors and
proved the complexity to be O(n), regardless of the number
of lists (processors). We also showed that this performance is
optimal under the scheme of one-channel broadcast.

We initially avoided the effect of conflicts which exist in
this mode of communication by introducing the algorithm
in an ideal environment in which we pay no penalty for
accessing the channel. We then showed that the problem of
accessing the channel adds a factor of at least log k to the
algorithm’s performance. This suggests a need to investigate
whether a different approach; i.e., minimizing the number of
conflicts while designing the algorithm, might result in a
better total performance. We also note that the use of a single
channel limits the performance considerably (for example,
merging cannot be accomplished in less than n sequential
time slots) which motivates the use of more complex config-
urations of broadcast with more than one channel. For recent
work on broadcast networks with multiple channels see [14]
and [17].

ACKNOWLEDGMENT

We would like to thank E. Gafni for many stimulating
discussions and helpful remarks, and J. Marberg for many
comments and a thorough review of the manuscript.

REFERENCES

[1] Aho, Hoipcroft, and Ullman, The Design and Analysis of Computer
Algorithms. Reading, MA: Addison Wesley, 1974.

[2] K. Batcher, “Sorting networks and their applications,” in Proc. AFIPS
Spring Joint Comput. Conf., vol. 32, 1968, pp. 307-314.

[3] G. Baudet and D. Stevenson, “Optimal sorting algorithms for parallel
computers,” IEEE Trans. Comput., vol. C-27, Jan. 1978.

[4] S.H. Bokhari, “Max: An algorithm for finding maximum,” in Proc. 1981
Conf. Parallel Processing, 1981, pp. 302-303.

[5] A. Borodin and J. H. Hopcroft, “Routing, merging, and sorting in paral-
lel models of computations,” in Proc. 14th ACM Symp. Theory Comput.,
1982.

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 3, MARCH 1986

[6] J. Capetanakis, “Generalized TDMA: The multiaccessing tree protocol,”
IEEE Trans. Commun., vol. COM-27, pp. 1476-1484, Oct. 1979.

[7] S. Cook and C. Dwark, “Bounds on the time for parallel RAM’s to
compute simple functions,” I14th ACM Symp. Theory Comput., 1982.

[8] R. Dechter, and L. Kleinrock, “Parallel algorithms for multiprocessors
using broadcast channel,” Dep. Comput. Sci., Univ. California, Los
Angeles, CA Tech. Rep. 850025, 1981.

[9] D. Ditton, D.J. Dewitt, D. K. Hsiao, and J. Menon, “A taxonomy of
parallel sorting,” Comput. Surveys, vol. 16, no. 3, pp. 287-318, 1984.

[10] A.G. Greenberg, “On the time complexity of broadcast communication
schemes,” in Proc. 14th ACM Symp. Theory Comput., 1982.

[11] L. Kleinrock and M. O. Scholl, “Packet Switching in radio channels:
New conflict-free multiple access schemes for a small number of data
users,” IEEE Trans. Commun., vol. COM-28, pp. 1015-1029, 1980.

[12] L. Kleinrock, Queuing Systems, vol. 2. New York: Wiley, 1976.

[13] S.S. Lam, “A carier sense multiple access protocol for local networks,”
Comput. Networks, vol. 4, pp. 21-32, 1980.

[14] G.M. Landau, M. M. Yung, and Z. Galil, “Distributed algorithms in
synchronous broadcasting networks,” in Proc. 12th Int. Conf. Automata
Languages, Programming, Nafplion, Greece, 1985, pp. 363-372.

[15] S. Levitan “Algorithms for broadcast protocol multiprocessor,™ in Proc.
3rd Int. Conf. Distributed Comput. Syst., 1982, pp. 666-671.

[16] S.P. Levitan and C. C. Foster, “Finding an extermum in a network,” in
Proc. 9th Ann. Int. Symp. Comput. Architect., Austin, TX, 1982.

[17] J. Marberg, and E. Gafni, “Sorting and selection in multichannel broad-
cast networks,” in Proc. 1985 Int. Conf. Parallel Processing, 1985,
pp. 846-850.

[18] R. Metcalfe and D. Boggs, “Ethernet: Distributed packet switching for
local computer networks,” Commun. Ass. Comput. Mach., vol. 19,
no. 17, pp. 395-404, 1976.

[19] E. P. Preparata, “New parallel sorting schemes,”/EEE Trans. Comput.,
vol C-27, pp. 669-673, 1978.

[20] M. Snir, “On parallel search,” in Proc. ACM Symp. Distributed Algo-
rithms, 1982.

[21] H. Stone, “Parallel processing with the perfect shuffle,” /EEE Trans.
Comput., vol. C-20, no. 4, pp. 153-161, 1972.

[22] B.W. Stuck, and E. Arthurs, A Computer Communications Network
Performance Analysis Primer. Englewood Cliffs, NJ: Prentice Hall,
1985.

[23] C.D. Thompson and H. T. Kung, “Sorting on a mesh connected parallel
computer,” Commun. Ass. Comput. Mach., vol. 20, no. 4,
pp. 263-271, 1977.

[24] L.G. Valiant, “Parallelism in comparison problems,” STAM J. Comput.,
vol. 4, pp. 348-355, 1975.

Rina Dechter was born in Natania, Israel, in August
1950. She received the B.S. degree in mathematics
from the Hebrew University, Jerusalem, Israel in
1973, the M.S. degree in applied mathematics from
the Weizmann Institute, Rehovot, Israel in 1975, and
the Ph.D degree in computer science from the Uni-
versity of California, Los Angeles in 1985.

During the years 1975-1978 she was a Staff Mem-
ber at the Everyman’s University, Tel-Aviv, Israel,
developing self-study programs for teaching college
mathematics. From 1978 to 1980 she was with
Perceptroncs Inc., Woodland Hills, CA, responsible for modeling, experi-
mental design, and computer simulations for human-resource test and evalu-
ation for advanced weapon systems. She is currently at the Cognitive System
Laboratory in the Computer-System Department at the University of California
doing research in the area of artifical intelligence.

Leonard Kleinrock (S’55-M’64-SM’71-F’73) re-
ceived the B.S. degree in electrical engineering from
the City College of New York in 1957 and the
M.S.E.E. and Ph.D.E.E. degrees from the Massa-
chusetts Institute of Technology, Cambridge, in
1959 and 1963, respectively.

While at M.I.T., he worked at the Research Labo-
ratory for Electronics as well as with the computer
research group at Lincoln Laboratory in Advanced
Technology. He joined the faculty at UCLA in 1963.
His research interests focus on compnter networks,

DECHTER AND KLEINROCK: BROADCAST COMMUNICATIONS AND DISTRIBUTED ALGORITHMS 219

packet radio systems, and local area networks. He has had over 120 papers
published and is the author of three books, Communication Nets: Stochastic
Message Flow and Delay, 1964; Queueing Systems, Volume I: Theory, 1975;
Queueing Systems, Volume I1: Computer Applications, 1976, and also Solu-
tions Manual for Queueing Systems, Volume I, 1982.

Professor Kleinrock served as the head of the University of California, Los
Angeles, Computer Science Department Research Laboratory and is a well-
known lecturer in the computer industry. He is Principal Investigator for the
Advanced Research Projects Agency Advanced Teleprocessing Systems con-
tract at UCLA and co-Principal Investigator for the National Science Founda-
tion Advanced Network Environment for Distributed Systems Research

Project. He was recently elected to the National Academy of Engineering, is
a Guggenheim Fellow, and serves on the Boards of Governors of various
advisory councils in the computer field. He is a member of the Science Advi-
sory Committee for IBM. He has received numerous best paper and teaching
awards, including the ICC 1978 Prize Winning Paper Award, the 1976 Lan-
chester Prize for outstanding work in Operations Research, the Commu-
nications Society 1975 Leonard G. Abraham Prize Paper Award. In 1982, as
well as having been selected to receive the City College of New York Towns-
end Harris Medal, he was co-winner of the L. M. Ericsson Prize, presented by
His Majesty, King Carl Gustaf of Sweden, for his outstanding contributions in
packet switching technology.

