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The average packet delay (including queueing and randomized retransmission
delays) for a finite number of random access users of a channel with infinite
buffers is studied. For a class of contention-type memoryless protocols (includ-
ing ALOHA and nonpersistent CSMA), a diffusion process approximation for
the joint queue length distribution is formulated, and on the basis of its station-
ary solution, two approximate mean delay formulas are proposed and examined
against simulation.

1 Introduction

An important performance measure in packet broadcasting communication systems such as ground
packet radio networks and local-area computer networks is the average packet delay at a given throughput
value. When the channel access protocol falls in the class of random access schemes, this delay versus
throughput performance for a finite user population has been studied mainly by use of linear feedback
models, for example, ALOHA-type schemes are studied in [Lam75], [Carl75] and [Davi80], and carrier-
sense-multiple-access (CSMA)-type protocols are studied in [Toba77], [Toba80bl, [Hans79] and [Heym82].
In a linear feedback model, a Markov or semi-Markov process is formulated for a finite population of statist-
ically identical users each being capable of storing at most one backlogged packet. (The system state is usu-
ally the number of backlogged packets.) This model may be realistic for a system of users who can actually
have at most one outstanding request (like interactive terminals), or a system of so many users that traffic
per user must be held at a sufficiently low level in order for the system to be stable.

To analyze the throughput-delay relationship for a group of users with capability of storing more
than one packet, some extension of the linear feedback model has been attempted in [Toba80al. One of the
conclusions obtained in this study is expressed by the phrase in [Toba80al that the (optimally controlled)
system is mostly channel bound as opposed to storage bound. This statement is drawn from an observation
that the improvement (in the throughput-delay performance) brought about by increasing the number of
packet buffers from 2 to 3 is not as significant as that by increasing it from 1 to 2. Studying the perfor-
mance in the case of users each having an infinite buffer motivates us not only on its own value but also
with interest in comparing the difference between the finite-buffer and infinite-buffer cases.

In [Taka83], we introduced a notion of memoryless protocols assuming that all users have packets (of

constant length) ready for transmission at all times. This memoryless property is defined such that when-
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ever each user experiences an idle (non-transmining) period (whose duration is assumed to be exponentially
or geometrically distributed) he renews his action independently of the past happenings. Random-access
protocols as pure and slotted ALOHA, and slotted and unslotted CSMA and CSMA-CD (with collision
detection), in a single-hop (fully-connected or hidden-terminal) environment, can fall into this class. It has
been shown in [Taka83] that the memoryless protocol systems have independent and identically distributed
packet interdeparture times (i.e., the intervals between two successive successful transmissions) .

In this paper, we study the mean packet delay (which includes the queueing and randomized
retransmission delays) in a finite population of users each of whom has an independent (renewal) packet
arrival process and an infinite capacity of storing outstanding packets. When the channel access protocol is
slotted ALOHA, this problem has been addressed in several papers. For example, Tobagi and Kieinrock
[Toba76] showed simulation results. Kleinrock and Yemini [Klei80,Yemi80] developed a Wiener-Hopf
technique in the case of two users. Saadawi and Ephremides [Saad81] proposed an iterative approximation
method using the notion of user and system Markov chains. Finally, Sidi and Segall [Sidi83] found an
explicit expression for the mean delay in the case of two identical users. The present paper continues these
efforts by newly introducing a diffusion Process approximation to this problem which can handle all
memoryless protocols.

The organization of the following sections is as follows. In Section 2, we develop a diffusion process
approximation to the joint queue length distribution for a finite population of users of one of the
contention-type protocols. Based on the stationary solution to the diffusion equation with reflecting boun-
dary conditions, two approximate mean packet delay formulas are proposed. In Section 3, we discuss the
accuracy of our formulas by comparing them with simulation in several example cases. Concluding remarks
are given in Section 4.

2 Diffusion Process Approximation for a Contention System

in all users.

The time may be siotted (discrete) or unslotted (continuous); its unit is chosen to be the constant
packet transmission time. (In a slotted-time system, the slot size may equal this unit time (for ALOHA) or
its fraction (for CSMA).) Let the M users be indexed as 1,2, .M. Let 1/, and C2, be the mean and the
coefficient of variation, respectively, of the packet interarrival time at user i (i=1,2,- M). Likewise,
since there can be no more than one successful service (called departure) in a unit time, let 1/S and (2 pe
the mean and the coefficient of variation, respectively, of the system interdeparture time. Note that S js
equivalent to the channel throughput. Furthermore, we assume that a successful transmission is achieved
by user / with probability ¢, (i=1.2, M), where Z,’Z, g =1. If we define /8, and C? as the mean and
the coefficient of variation, respectively, of the packet interdeparture time from user /, then it can be shown
(see [Taka83] for derivation) that
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Si=qS; 1-C?=gq,(1-C?) i=12,M W

We note that S and C? have been calculated in [Taka83] for a number of contention-type memoryless pro-
tocols (exactly for fully-connected systems, and approximately for hidden-terminal environments).

2.1 Diffusion Equation for a Contention System

Let us choose the time origin +=0 arbitrarily and let A;(1) be the number of packet arrivals at user
i during interval [0,7] (i=1,2,- M). Similarly, let D,(r) denote the number of departures from user
during the same interval [0,¢]. Our approximation is based on the assumption that all users are nonempty at
all times. It follows that 0;(1), the number of packets existing in user / at time 1, is given by

0,() = 0,(0) +4,(1) — D,(1) =12, M 2
Therefore, the change in Q,(7) during an interval [¢,7+A] is expressed as
O:(t+4) = Q,(0) = [A4,(++A) — 4,(1) ] =[D;(t+A) - D,(1)]
which we write as

AQ,() = A4,() —AD,(1) i=12--M 3)

We consider an M-dimensional process
AQ(1) = [AQ;(l),AQz(I),“',AQM(I)]

Note that 4,(¢) and 4,(1) are independent for i = j. We assume that A;(1) and D, (1) (possibly i=j) are
also independent due to the assumption that all users are always nonempty (so that the arrival process does
not affect the departure process). Then, it follows from Eq. (3) that

AQ.(1) = A4,() —AD,(7) .
Var[AQ;(1)] = Var[AA4,(1)] + Var[AD,(1)] ,

Cov[AQ;(1,A0,(N] = CovlAD,(0),AD;()], = ij=12,+M 4)

We are now to find the quantities on the right-hand sides of Eq. (4) by approximation. Our approxi-
mation replaces the integer-valued variables A4;(r) and AD,(r) by the corresponding continuous-valued
Gaussian variables.

If A is sufficiently large that we observe many arrivals and departures during [7,7+A], then on the
basis of the central limit theorem, we can approximate each A4;(1) by a Gaussian variable such that
A4, (D) =NA; Varlad,(n)] = A CEA i=12, M (%)

Similarly, the number of departures from all users in [7,+A]

AD() A AD() 5)

i=1

can be approximated by a Gaussian variable such that

AD(1) = SA; Var[AD(1)] = SC2A (7)
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The M-dimensional process [AD,(I)‘ADZ(IJ,---,ADM(I)] is also approximated by a multivariate
Gaussian process because AD, (1) and AD;(1), i j, are dependent. 1t can be readily shown (see [Taka83])
that

Iy 152 oM (8)
where
1 i=j
B=149 i#j
Substituting Egs. (1), (5), (7) and (8) into Eq. (4), we may determine the coefficienits for the

diffusion equation which is given shortly:

mA AAQ (1) = (\,—S)A,
oA A CovlAQi(1),AQ,(1)] = ls,,(x,('j_,+s,)—s,(x—(“,?)]A

=12, M 9

Since AQ(7) has been defined as a linear combination of the two independent multivariate Gaussian
processes by Eq. (3), it can also be approximated by a multivariate Gaussian process whose means and
covariances are given by Eq. (9).

Let p(x;1) be the joint probability density function of AQ(r), where x=[x,,x2,~,xM]. It satisfies
the M-dimensional forward diffusion equation

ap(xr) | MM , () M Ip(x;0)
ar = ? i=1 j=] a2 ax/axi - ;} = 6X, i

If there is no boundary condition imposed on AQ(1), then it is an M-dimensional Brownian motion with
drift. However, since we have assumed that all users are nonempty at all times (i.e., AQ,(r) > 0), each of
M boundaries x, =0 (= 1,2, M) should act as a reflecting barrier such that no probability mass can col-
lect at x,=0. The reflecting boundary condition is given by
M dp(x;1)
%za},\”ax - mp®:) |, =0 =12, M an
/

j=1

2.2 Stationary Solution to the Diffusion Equation

The stationary solution to Eq. (10) where the time derivative is set to zero which satisfies the
reflecting boundary condition in Eq. (11) is given by

M
P(x) =TJ (~w) explw,x;) (12)

il
Here the column vector @ = [w,]7 is computed from the column vector m=[;] 7 and matrix o = [o2] by
w=20""'m (13)

where o~ is an inverse matrix of o,
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From Eq. (9), it can be shown that

i=1

et Co) =11 > &ﬂ M N C2+S)
= 2 . B
e" (r 12=‘ X,C}‘,“’S, H x’ o y ’

v S, (1—Cd \ s, (1-CP) \
+/

B 1 M
(o) i = qata ), (A CRitSik) Bt A St
i~ det(o) E\ A d 21 M Clit Sk NGt
(ki)
i,j=1,2,~-‘M 14)
Therefore, @ can be computed through EQ. 13).
s such that

he special case of statistically identical user

Let us now consider t
oA gl
Ca_l =Ca » q; M

Ni=NS
B R Hebley pe  i=12M (15)
=T Gy M ;
In such a case from EQ. (9) we have
m=A"5,
(r,z,-=5,-;()\cf+s)—s(1——cl) i,j=1,2,---,M (16)
1t follows from Eq. (16) that
det (o) =()\c}+s)M"()\c}+sC2) 8
¢o=b) e L e 2, M a7
=1y e h + 4 s P j=
o )i ] SinUNCaaTS )y+s (1 D) ij=1.2:"" )
Therefore, from Ed. (13), we obtain
2(x—5)
2 i=12.M (18)
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nn) A Prop [ 0=n]

nil
= _/:, (-m,)exp(m,.\‘)t/x = (] ~pidlppr =012 (20)

Where
Pi=exp(w,) I=12 p (21)

From Eq. (20), the average queye length in user / (now denoted by 0*) is given by

0"~ Z np(n) = T I=1,2,- pr (22)
=0

07 = po _" Ve, im1,2,ee pg 4)

‘= po L=exp(=2/¢2

i
: li=p;

G152 (25)

S=Mp(l—p)“"; C2=1‘S; O ey : D“”=I/p
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Figure 1. Mean delay for a system of 3 identical users

29, respectively, aré shown in Figure 1.
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Figure 3. Comparison of the diffusion approximation with simulation
results in pure ALOHA.

of a procedure given in [Taka83]. In the present case, we have S=0.19 and C?2=0.74. Because of the
exponentially distributed interarrival times at each user, we use ¢2=1inEq. (18). The packet delay at zero
input is given by D©—=1+(1/g) =11. The values of our approximate mean delays D* and D** in Egs. (24)
and (25) are plotted together with the simulation results (only the sample means are shown by circles) for
2,000 packets (i.e., 2,000 successful transmissions). Here too, our diffusion approximation appears 10
overestimate the mean delay as the arrival rates are increased.

The fourth example deals with a symmetric hidden-user environment for a population of M=20
unslotted nonpersistent CSMA users each of whom can hear only m —17 other users’s transmission. We
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Figure 4. Comparison of the diffusion approximation with simulation
results in hidden~user, unslotted CSMA .

assume zero Propagation delay and a Poisson arrival process at each user, The time until the next transmis-
sion is started by any user (who is not sensing a busy channej) is assumed to be €xponentially distributed
with mean 1/g. According to our analysis in [Taka83] (approximate but validateqd against simulation), for
G=g¢M=1778 which  nearjy makes § maximum, we have §<0g45 and C?=(.46, Again,
DY (1/g) =12.25. In Figure 4, we show the values of p* ang D™ in Egs. (24) and (25) with simuyla-
tion results (sample means only) for 10,000 packets. The agreement js remarkable, E
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