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We consider packet-queuaeing processas in two Intarfering buffered Pacxet Radio
Units (PRUs) that share a Slotted ALOHA broadcast channel. It can be shown that the
problem of Interfering queueing cannot be solved using classical queueing theory. Here
we show that classical approximation schemes, |.a., heavy- and light-traffic or diffusion
approximations, fail to provide adequate predictions. Therefore a novel approximation
scheme, which we call topological approxtmation, |8 presented. The idea is to repiace
approximate solutions of an exact model with an exact solution of an approximate model,
obtained by perturbing the topology of interference. Finally, our anaiysis shows that the
curse of Interference, i.e., channsl waste caused by coilisions and/or unnecessary

dalays, may paradoxically be cured when the Interference Is Increased!

In fact,

*maeximum interference” provides a superb tlow-raguiating mechanism obtaining the best

delay-throughput performance ideally possible.

I. INTRODUCTION

Consider a packet-switched store-and-forward
broadcast (e.g., radio) communication network
(2.3, 4). Packets are queued in buffered Packet
Radio Units (PRUs), which act as the
store-and-forward nodes, and attempt to obtain the
channel according to the rules of some access
scheme. Simuitaneous transmissions on the channel
resuit in collisions and effective loss of service.
Analyzing the Qqueueing behavior of the buffered
packets is a typical problem of Interfering (through
the service mechanism) queueing processas.

Problems of interference between queusing
processes arise in computer networks through the
communication protocol (which conditions  the
activities of one process on the state of the
others) * and/or through shared communication media.
Interferanca Is a fundamental mechanism for
decentraiized sharing of a server (e.g., a channel)
and/or of load (e.g., dynamic routing). Therefore,
analysis of Interfering queueing processes is of
prime importance to the understanding of
decentralized resource-sharing mechanisms.

In some cases the communication protocol or the
communication medium eliminates the dependencias
between the queueing processes, and then the
Interaction problem decomposas into a set of simple
classical queueing problems (7] (or can be
spproximated as a decomposable proolem).
However, If the queues (nteract properly, sharing a
server and/or arrival processes, it s usually
Impossible and undesirable to eiimnate the
Interaction in modaliing or in practice, since this may
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*a lypical exampio of Wch nierfernng queueny [ ocesses is that of
routng poicies sch as *|on the shortest Queue”.
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be pracisely the Instrument through which
distributed resource sharing is carried out.

2. THE TWO BUFFERED PRUS

Consider two PRUs communicating packets to a
common destination--the jation--over a time-
slotted shared channel (see Figure 2 (1)). At each
slot, packets arrive at PRI from a B8ernoulll source of

rate A (1s1,2). The PRUs use a Slottad-ALOHA
channel-access scheme [1); that is, a busy PRU
decides Independently whaether or not it should
transmit by tossing a biased coin. It transmits If its
coin shows Heads.® Let 4 (is1,2) designate the
probability of heads on PRl's coin. If the two PRUs
decide to transmit at the same slot, then a
"coilision® occurs and the two transmissions destroy
each other.

Lat Q‘t be the number of packets buffored at PFIl at
the beginning of siot t. The queusin; process
Qtl(erO? is a nearest-neighbor random walk (RW)
on the positive quadrant of the two-dimensional
integer lattice (TDRW). Figure 1 depicts tha
transition diagram of a general TDARW (note that In
our case the probability 2, Is 0). We are interested
In finding the steady-state average number of
packets In the queues, 0\501(X1.)2,u1.u2). Using
Little's result (3, 4], we can then compute the
average delays T]-Ol/)\r Unfortunataly, while the
probiem of the one-dimensionaj random walk I8
thoroughly researched, the passage to two
dimensions leads to a terra incognita. The
two-dimensional probiem Is inherently more difficult
In two respects: first, the queueing procasses are
dapendent upon aach other, and second, the
interaction between the benavior on the boundary

*Note (Nal our model of Slotted-ALOHA does not istinguash between
“new’ and ‘retransmiiied® packels.
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(when one queue empties) and the interior behavior
of the RW may be very complex.

Q

LN\

e

LX)

P ar U-. a) Q

0O

figure 1. Transition diagram of the general
TORW

The intricacies of deriving 8 closed-form solution are
luminated In Appendix |. At the present there s no
closed-form solution of the general TORW problem as
described above.

in the absence of a closed-form solution, an
approximate soiution is desirable. A natural path to
adopt Is to apply heavy- of light-traffic
approximations (3, 4].  Unfortunateiy, as shown
below, classical approximation schames fail to
provide an adequate approximation of the
deleay-throughput performance.

The failure of classical methods to provide eithas
exact or proper approximate solutions demonstrates”
the need for novel methods. One possible approach
is to iImbed thae problem In a ciass of problams that In
some sense approximate It. This approximation can
be obtained in our case by considering a set of
interfering queueing problems in  which the
interfaerence is gradually increased.

We consider four* modeis of Interference for the
two-bufferad PRUs problem. In ail four modeis, the
two PRUs Interfere with each other's servics
(transmission) maechanism, l.e., sfinuitaneous
transmissions at the same siot resuit in total loss.
The Increase In Intarference will be assumed to
occur between the packet transmission and arrival
mechenisms. These four modeis are illustrated in
Figure 2.

Modet 1 The two PRUs are assumed to be
terminais generating now  packets
independently of transmissions. There i8
no interference other than coilisions of
transmissions.

%11 0 posswie 10 irelch he ipecum of mterference o more
models: Nowever. Ihe o resented we sulficient to illusrate the
power Of 1000/0QICAI ASPYORIM(ION.

Model 2 The two PRUs are assumad to be
repeaters, receiving packaets from a large
population of terminals, which they store
and forward to the station. Thus, during
the transmission by & given repeater, new
packets arriving from the tarminais cannot
be heard.

Model 3 Suppose the two repeaters In the
previous model are within hearing range
of each other. In addition to the praevious
interference, packets generated by the
terminais are destroyed by the
transmissions of either repeater.

Model 4 If, in addition to the Interference in the
previous model, we assume that all
terminais are heard by both PRUs, then an
attempt by any two terminais to deliver
new packats to aeither repeater resuits in
collision of arrivals.

Our original problem Is concerned with the solution of
either model ! or 2;: modeis 3 and 4 may be
considered as approximations.

The Increase of interference among the modais
causes a threshoid behavior of the delay-throughput
performance; beyond a certain evel of interference
(model 2 and above) the performance of the models is
identical (see Fig. 4). As we show, the fourth
("maximum (nterference’) model can be solvad
exactly In terms of closed-form formuiae; therefors,
its behavior serves as an excallent approximation of
the others. We adopt the name fopological
approximarion because the four modeis approximate
each other In the sense of the topology ot
interfarence.

Model 1| Mode!l 2

Moge!l 3
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Figure 2. Four models of Increasingly
Interfering two-buffered PRUs



3. APPROXIMATE SOLUTIONS

Our point of departure In developing approximate
methods s to simplify the reiation between the
boundary and Interior behavior of the queueing RW.
A reasonable simpiification arises If we adjust the
transitions at the boundaries or the interior so that
the projections of the TORW on the two axes
parform one-dimensional RW and can be solved using
classical techniques. We cail such a TDRW
projectable.

There are two extreme approximations of a TDRW In
terms of a projectabla TORW. The Aeavy-traffic
approximation assumes that the transitions at the
bounaaries (l.e., whan one or both queues empty)
are projections of the interior transitions (l.e., when
both queues are busy). Under the heavy-tratfic
assumption, each PRU sees the other as a Bernoulll
source of interfering noise. We ignore the details ot
the interaction of the two queues when any of them
emplics. The Interaction Is reduced to a constant
interfarence. At the other extreme lies the
ligai-iraf fic approximation that imparts the boundary
behavior to the Interior. Under the lignt-tratfic
approximation, Iinteractions between the two queues
are completely eliminated. It is assumed that no
collisions occur. The two queues become
Independent.

Analysis of the heavy- and light-tratfic
approximations is provided in (8]. The resuits of the
analysis were axtensively compared for the four
models of interaction with those of simulation angd
were found In general to provide & poor
approximation. Figure 3  depicts typical
disappointing resuits.

What about other approximations? It Is possible to
consider projectable TDAWs that are "between” the
two extremes of heavy- and light-traffic. The”
problem with this approach is that we do not know, =
on the basis of analysis, which point "in between” to
select. Another classical approach Is to use
Diffusion Approximation. Alas, the diffusion
approximation provides worse resuits than the
heavy-traffic analysis. There are two reasons. First,
the ditfusion approximation subsumes a
heavy-traffic to start with. Second, the ability to
model the intaraction batween the boundary and the
interior Is greatly reduced. The only succassful
axisting solution (5, 8) assumes that as soon as the
dittusion process hits the boundary, it is reflected
orthogonaily. One needs & ditfusion approximation
that aliows sticky boundaries and reflection at othaer
angles. This soon leads beyond the scopu of simole
theory of partiali differential equations and the
raison d'stre of the diffusion aepproximation (le.,
simplitiad ciosed-form solution) I8 lost.

The failure of ciassical approximation methods I8
disheartening; novel methods of spproximation are
necessary
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Flgure 3. Approximate delay=-throughput
for Model 1

4. ANALYTIC SOLUTION OF THE "MAXIMUM
INTERFERENCE" MODEL k

One possible alternative to approximate solutions of
exact models s exact solutions to approximate
models. In our case we have imbedded the problem
within a class of intarference problems (modeis
1-4), each of which may be considered a topological
approximation of the others. Figure 4 depicts the
delay-throughput performance of the four models
obtainad from simuiation. The performance curves of
the last three models overlap each other,
demonstrating the quality of topological
approximation. This threshold behavior of the
delay-throughput curves is of interest in itsaif. It is
laft for future research to expiain this behavior
analyticaily.

Consider the TDRW of the maximum-intarferencs
modal; Its transition behavior is depicted In Figure
5.* This TDRW is aimost projectaple; that is, the
transition probabilities at each boundary are not
exactly the projections of the interior movements
but are projections muitiplied by constants. This
similarity to a projectable TDRW rendars this model
solvable in a simpta product form.

Now consider the general steady-state transition
equation of the TORW given In Appendix |. Let us

e

* Honcelorth we use the notation x & 1-x.
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Figure 4. Threshold behavior of the delay-
throughput curves as Interface
increases

scale the coefficients representing the boundary
transifions and the respective transforms. That ls,
define

8%w) & 6w/, and A*(zw) & A (2w,
&My & 6M(2)i, ana A(zw) & AT (2wi,

6% 3 G%/(iyay) and  A%(zw) & A%(zwdii iy
The steady-state equation may then be rawritten in
terms of the scaied transforms. The naw form is
identical to the equation for a projectable TORW and
thus may b soived. The resuits may be used to
recover the original transform. The cumbersome
computation raesuits In the following product form
expression for transforming the steady-state
distribution of the fourth model *

[ 1/(1-p‘z) "‘1] [ 1/(1-pzw)-uz]

G(zw) =
[1r0rep) -] (101 -, ]
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Figure 5. Transition probabi!ities for the
maximum interference model

Let us consider the case when the two PRUs are
symmatric (l.a., kllkz-)\ and “1'“:'“)' The expected
number of packets queued In the buffer of aeither
PRU Is given by

A g 0G -

Qs SF(1.1)s p/(1-p)i+pp)

When the transmission probabilities g, (1s1,2) are 1,
the behavior of the system is simpiified. The number
of packets in each queue Is at most one. The

bivariate queueing process Ox has 3 statas whoso
steady-state probabilities are easily computed to be

#(0.0)m1/(142N), #(0,1)sw(1,0)8XX/(1+2XR). From
these steady-state probaoilities one can reaally
obtain the different performance measures.

Qs X&/(hzki) (when ys1)

The overall expected throughputs (of each traffic
stream) may be computed to be

M/ (10A%)2 ne
Ss
AN/ (142X0) us

Using Little's resuit we may compute the expected
delay of a packet

(14AR)/ (w=AAR) w1
Ts
1 “I1

Note that the expected delay decrsases as the
probability of transmission u Iincreasas toward 1.
Moreover, when the probability of transmission u
assumes the value 1, a discontinuous improvement of
per formance occurs. the expected throughput exhidits o
fump increase and the expected delay shows a8 fump
decrease. Therefore, by choosing the rude



transmission policy us1 the PRUs obtain a singular

improvemaent reaching the best possible performance.

The optimality of the rude policy is intuitively clear.
Indeed. a packet entering the system |s guaranteed
immediate, uninterrupted service. A new packet is
permitted into the system iff the system s empty
and no other packet tries to enter. After entry, the
expected delay Is exactly one siot, and no channel
waste In collisions or eampty slots occurs.

The rude policy results in a perfect synchronization of
the arrivais and transmissions. The system exhibits
phased service cycles. An arriving packet s
deliverad from the second hop (the terminal level) to
the first hop (the repeater level); then It I8
gelivered to the station. At the end of each cycle,
the system is ready for the next service cycle.
Tnrough parfect synchronization, the system obtains
(he bast performance possible for any two-hop
system, namely, delay of one siot per accepted
pacxet (minimum possible) and maximal throughput
possibie (as much as the limits of Intarferencs
parmit).

The surprising effect Is the singularity of the rude
behavior. what Is the reason for the jump In
performance when the transmission probabllity Is
increased from 430.999099 to ys1? The rude policy
preciudes the possibility that the two queues will
aver be busy at the same time. The policy
430.900999 renders the event "poth PRUs are

busy® highly improbable yet possible. Howaver, on
those rare occasions when both PRUs become busy,
they will k@ep colliding with each other for a very
long period of time, contributing significantly to the
expected delay. Therefore, once those langthy
collision periods are exciuded (as in the rude polley),

the expected delay exhibits a discontinuous-

decrease.

Another surprise Is the sensitivity of the
two-buffered PRUs problem to smail changes In the
Interfarence structure. Indeed naither the first,
sacond, or third modais even admits a rude policy.
Nor is It possible to solve those modeis with a simple
computational procedure such as the one above. A
small change In the combinatorics of Interference
may lead to a problem that Is inherently different.

Finaily, lat us note that the resuits of analysis match
those of simulation so that our analytic solution of
the maximum Interfarence model Is indeed a good
approximation af the other models. Figure 8
compares the deiay-throughput performance of the
maximum interference model obtained by simuilation
and by analysis.

To summarize our findings:

1. Maximum Interference modeis can be
solved in terms of a simple product
form solution. TAis can be (rivaily
generalized ro any number of PRU:s.
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Figure 6. Delay=-throughput performance of
the maximum interference model
simulation versus analysis

2. The delay-throughput paerformance of
maximum-interference modeis can be
used as an excasilent approximation for
lower Interfarence models.

3. Maximum interference modeis admit
rude policies as the optimal behavior.
Such policies exhibit singular
improvements of performance and
obtain the best possible performance
through perfect synchronization.

4, The analytic behavior of
multidimensional Interfarence systems
can be very sensitive to “smail"
changes in the topology of
intaerference. Nevertheiess, the
rasulting performance may be aimost
Invariant to these changes.

in [8], other seif-synchronizing Interference
topologies that admit rude policies and obtain the
Ideaily optimal performance are further explored.



Appendix |: The Steady-State Equation of s TDRW
Consider a general TORW whose transition behavior
is lllustrated In Figure 1. Let 1(01.02). Q20, be the
bivariate steady-state distribution of the numbers of
queued packets (l.e., the position of the RW). We
consider the following transforms

Q, Q
GHzw) & 2 70,0z 'w 2
a21.0,21
Q
6%2)s 2  #@,02
Q,21
01 93
w4 2 #(0.0,w
0221
6® 1 #(00)

each of which summarizes the steady-state
behavior of the TDRW at the respective region of
the nonnegative quadrant.

Also, let us deflne the following transformed
transition coefficients In terms of the transition
prooabilities of the respective regions:

A (zw) & (w1 1/w] F“ a; a‘- 2]
a, &1 a 1
@ a « 2z
() 1 2
L &2 L . "
b [ y ) 7
AT (zw) & (w1 1/w] ja. & a | |1/2
' 1 '
a, a.-1 a, 1
0 0 0 b4
I

A (zw) & (w1 1/w]

0 a1 &

AB(2w) & (w1 1/w) (o o a“:l [1/:1
l
|

In terms of the above transforms and transitions
coefficlents, it Is possibie to derive (8] the following
steady-state equation

0 s AM(2.w)GH (2w) ¢ A¥(z2w)G(2) »

AB(zw)GY (w) + AT(2,w)G”

This Is an equation for three unknown functions G“.

G'? and G* and one unknown normalization factor G*.
These unknowns satisfy two additional conditions:

Analyticity  The above functions are anaiytic in the
respective unit (poly) disks (lLe.,
((zw)| |z||wis1), (2| |2IS1}, and
(w{ |wis1) respectively).

Normalization Gu(1.1) . 6“(1) . G“(U + G%a

It is waeil known that the steady-state equation
together with the analyticity and normaiization
conditions (Aeoretically determines the stuady-state
transform uniquely. Untfortunataly, when It comes to
a practical solution, even relatively degenerate
forms of the steady-state aequation that can be
solved require extremely complex mathematical
Instruments; a general ciosed=form solution is yet to
be obtained (8].
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