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4bsiract — Suppose 2 packet radio network has nodes which
are randomiy distributed over the infinite piane according to
a Poisson point process such that nodes have an average of
V nodes within its transmission range. In this paper we
show that over all protocois, the maximum probability of a
successfui (ransmission over any period of time is upper
bounded by .9278/N for suitably large ~¥. We compare this
performance to that obtained using siotted-ALOHA and
CSMA, and show, for realistic networks, that these proto-
cols at best achieve respectively about 36% and 49% of our
bound.

1 Introducdon

In this paper we assume we are given a connected,
random. network.in which the average number of neighbor-
ing nodes is given by N (assumed to be fixed), and seek to
determine the maximum number of simuitaneous transmis-
sions in the network that can be successful. This number,

divided by the number of nodes in the network, wiil give the -

maximum probability of successful transmission and will be
an upper bound for any random access protocol that does not
use information about the directionality or locations of neigh-
ooring nodes. This resuit can be used then as a standard to
2vajuate the performance of other protocois in this eaviron-

men

2 Modei and Anaiysis

We wiil assume that nodes of 2 packet radio nerwork
ire distributed on the piane according o0 a Poisson point pro-
cess with 2 mean density of A radio units per unit area. With
70 loss of generaiity we wiil assume that radios transmit with
3 range of one unit (R=i). The average number of neigh-
Sors they nave, .V, therefore, is given by ¥ =aw. From any
given node. z. another node, &, is said (o be /-hops away If
there exists a path from a to 4 that contains /—! other nodes
and no other path exists between ¢ and 5 that contains fewer
nodes. In our derivation we will focus on a section of the
network conuaining 2 nodes, and thus wiil be concerned with
a portion of the network of radius Ry, where n=AwR¢. Our
final resuits are independent of ». We will assume the net-
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work formed by these n nodes is connected. We should
mention here that our network modei is that of a snapshot of
a mobile packet radio network (thus the random distribution
of nodes on the plane). In such nerworks it is extremely
difficuit for nodes to ascertain the locations of other nodes in
the network, and, in particuiar, nodes do not know the direc-
tion of the recipients of their transmitted packets. Our
results here are appiicable only to protocols that do not util-
ize information concerning the location or direction of their
neighboring nodes.

To motivate how we propose 10 caicuiate our upper
bound suppose a node, a, is transmitting a packet to one of
its neighbors. Let S; be the set of nodes that are /-hops away
from a, and define a k-order independent ser 10 be a set of
nodes that are ail murtuaily & or more hops away from each
other. A maximal k-order independent ser is a k-order
independent set to which no other node of the network can
be added. [t is clear that if all nodes of a maximal 3-order
independent set transmit, and these are the oniy transmitting
nodes in the network, ail of their transmissions wiil be suc-
cessfully received, where by this we mean that nodes in the
network that are possibie recipients of any of these messages.
hear exactly one transmitter. An exampie of such a set is
shown in figure |. In this figure, nodes of the 3-order
independent set are indicated by the larger circles. We can
casily show the following property of maximal 3-order
independent sets:

FIGURE |
A maximal 3-order independent set.



Lemma: For any maximai 3-order independent set M, no
node not in the set can transmit without causing interference
with a transmission of at least one node in M.

Proof: Suppose g was such a node. Using the previous
definitions. it is ciear that 5\{) M= {where 2 is the nuil
se1) otherwise g wouid de interfering with its own racspuon
from nodes in Y. If 5;(7) W =2 then this implies there s a
node that simuitaneousiy receives signals from 2 and aiso
from a node in M. Thus S;{) M =2, but this impiies that i/
is not maximai since z is at least 3 or more hops away {rom
avery node in .M.

We shouid observe that this lemma is aiso true for
maximai <-order independent sets where <=4 5, and thus
we cannot immediately conciude that a maximai 3-order
independent set corresponds (o the greatest number of
transmissions in the nerwork that are guarantesd (0 cause no
collisions. [ntmuitively, however, 10 achieve maximai
throughput we wouid want transmitters 1o be as ciose (¢ each
other as possibie, without having collisions detract from the
throughput of the channei. To make this more precise, let
S, be the set of all maximal k-order independent sets, and
let L, be the cardinality of the largest set in S, (we are
assuming here a finite but arbitrarily large grapn). Then,
since a k+1i-order independent set is aiso a k-order indepen-
dent set, we have that L, > L..;. Thus, since collisions occur
for k=1.2. we can conciude that the largest number of suc-
cessful transmissions. without allowing coilisions, is given by
L.

Since nodes in this scenario that are ailowed 0
transmit are mutually at least three hops away {rom each
other and at best exactly three hops, in the ideal case we can
imagine the piane being tesseilated with equilateral triangles
having sides =qual to the average distance between nodes
three hops away. This tessellation is'motivated in figure 2
where we have connected the nodes of the maximal 3-order
set of figure 1 (not all such configurations will resuit in a
hexagonal shaped figure).

FIGURE 2
Tesseilation of Figure 1.

For such a tessellation sach vertex corresponds (o a transmit-
ting node of the network. The number of such triangies, for
a given section of the network, wiil correspond to twice the
number of vertices. This can be seen in figure 3 where we
have mapped each vertex to the triangie lying directly above

b FIGURE 3
Mapping of vertices 10 triangies.

it (shown by the arrows in the figure). The shaded iriangies
have no corresponding vertices and can then be seen o be
squai in numeer to those that are mapped to vertices. [f we
let ¥ be the average distance between nodes three hops
away, then the area of each triangie is given by v3 %/4. Let-
ting 7 be the number of triangies in network under con-

sideration whose totai area equais =R¢, we can write:
T = 7R}/ (N3XY4)

The fraction / of successful transmissions then can be writ-
ten as:

2
[ - T/2 - ——
d i \W3IXE
In (1] it is shown that ¥ =2 and thus we have (using the
fact that N =Aw):

F(N) = 9068/ N (1

This then represents the fraction of successiul
transmissions that occur in a nerwork using a protocol that
schedules transmissions in a manner that at ail times a max-
imum number of nodes in the network transmit and there is
no possibility for collisions. To check the intuition that lead
to this =sguation we generated random planar connected
graphs with different mean densiues. These grapns nad from
30 w0 90 nodes. Using these grapns we found the size of the
maximai 3-order independent set. 1ne {racion of these
nodes was then caiculated. [n Figure 4 we have piotted f(V)
as weil as these generzted vaiues and we see a ciose mailch.
The data that lies 2bove the {N) curve is a resuit of the
2dge-affecis optained rom generaung Imute grapns. (o suca
grapns, nodes 2f the 2dge of the grapn are more likely 0
seiong (0 maximai independent sefs since they nave neigh-
hors oniy on one side. This t2nds !0 increase the size of the
maximal 3-order independent sets.

[t is interesting to graphicaily see what ¥ =2 means in
terms of transmission areas. We see in figure 3 that this
average third hop distance implies that the piane is covered
with unit circies from transmitters located at the vertices of
the equilaterai triangies. Observe that there is no overiap of
the circles and that very little of the plane is not covered. [n
fact it is weil known that this arrangement of unit circies
maximizes the density of the area of the plane that is
covered by only one circie (cailed singly covered) provided
that no area is covered twice [2]. Viewing the problem in
this manner leads us to inquire about the arrangement.
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FIGURE 4
Comparing /() with Generated Data.

e FIGURE 5
X (n terms of transmission areas.

ailowing possible overiap of circies, that yieids the highest
density of singly covered area. This density wiil yieid an
upper bound to the fraction of the sxpected number of suc-

cessful transmissions for 2 random packe! radio network .

since the probability that a2 transmission is succassruily
recetved is 2qual to the fraction of area that is covered by
only its transmission. We can use figure 6 (0 this end. This
igure is a reproduction of one of the triangies of figure 3,
vnere we nave drawn the triangies with a length less than 2
Lnits.

[n this figure let /(x) be the area of overiap within the trian-
gle, and let £(x) be the area which is not covered in the cir-
cle tesseilation. First let us derive equations for these two
functions. We can use the egquation derived in the appendix
for 4(-) to write:

[(x) = (m=—A(x,1))/2

which after some manipulation becomes:

<

[(x) = cos™(x/2) — =

FIGURE 5
Section of Plane with Overiapped Tasseilation.

The amount of area within the triangie that is covered is
C(x) =m/2—=3/(x) and subtracting this from the area of the
triangie gives:

\/j as i} / 3x N X
E(x)—TxJ—T.JCOS (X/Z)—T i

Now suppose we wanted to ‘‘partiaily’” tesseilate the
plane with unit circies in such a way that the sum of the
overiapped and the uncovered areas was minimized (thus
maximizing the amount of singly covered area). [t is ciear
from figure 6, that /(x) is increasing in x and &(x) is
decreasing, and thus seeking a minimum is 2 weil formed
problem. Letting the objective function be F(x) we then
have: '

F(x)-ﬂx-’—li-écos“(x/Z)—Jx =2=

4 2 4

This function is minimized for x"=1.9215 which gives the
tessellation shown in figure 7 (the points of intersection form
a 12-gon). We can aiso derive the fraction of the piane that
is covered by this type of tesseilation by forming the ratio of
the covered area to the area of the triangie. When this is
done, the fraction is determined to be .9278, (as compared to
9068 of equation (1)) and thus about 92% of the piane is
singly covered. We can thus write the upper bound as:

FUN) = 9278/ N (2)

FIGURE 7
Allowing Coilisions to [ncrease the Bound.



This arrangement of circies on the plane was conjectured (0
have the highest density of singiy covered area in 1964 (3]
and has recentiy been proved by Ernst Strass at UCLA
{unpublisned manuscript). We shouid observe that for rea-
sonapbiy large V. equations (1) and (2) agree for practicai
purposes and thus ail the approximations and conciusions
made using 2quation (1) are aiso appiicabie 0 our new
bound.

If we let G be the offered load (the averags number
of packers presented t0 the channei per unit time) of trafic
coming {rom the area of one circie, we ciearly see that G=1.
This corroboraies similar resuits in other modeis (4, 5] where
it was found that G=i for siouted-ALOHA networks. This
resuit then is a generaiization of that for a singie-hop net-
worKk wnere it can be shown that an offered load of one
packet per unil lime opumizes performance (6. We can
derive a ruie of thumb for muiti-hop packet radio networks
by approximating equation (2) as:

SN S UN

[t can best be interpreted by looking at figure 7. Here we see
that the piane can aiso be viewed as being aimost tesseilated
by circles of unit radius, the center of which contains a
transmitter. Since each transmitter sends (o an average of &
other nodes. it is clear that only one of ;¥ nodes wiil be suc-
cessful. thus giving the approximate 1//V ratio.

3 Comparison to siotted-ALOHA

We can compare this optimali fraction of transmissions
to that of the siotted-ALOHA radio network studied in [(S].
[n that work. the equation for the probability of successfui
transmission in the non-capture case, (which corresponds to
our /'(N)) was given by:

P(N.p) = (1=p) p(1—e=V?) g=No 3)

where p is the probability of transmitting in any randomiy
selected siot. The (1—e~¥'?) term in this equation is a factor
that represents the probabpility that the network is connected.
Since our derivation of /() assumes a connected graph, we
shouid eiliminate the connectivity term from 2quation (3)
sefore ccmparing the performance of this system to that of
:he opumai protocoi.

For z given vV, P(N.p) achieves a maximal vaiue for:
5 i e V== Vi
7 ALV s ——
: 2V
We can thus write the maximum fraction of successfui
rransmussions {or the siotted-ALOHA network as:

PHUN)Y = g(N)(1=g(N)) e~V (4)

The efficiency of a protocol is defined to be the ratio
of its performance to that of the optimal protocol and thus
we define:

e(N) 2P (M FI(N)

[n figure 8 we have piotted /7 (¥), P (¥) and 2(N) for
1<V, [n this figure we observe that () increases in
V. To find its limit, we observe:

lim g(¥) = /N
Vo

hence we have:
\llim 2(N) = /(9278 ¢) = 396

Thus the capacity of siotted-ALOHA at best is about 0% of
the channei capacity as given by our upper bound. Observe
that the optimal capacity of sioted-ALOHA occurs when the
density of (erminais approaches indnity. This of course
corresponds !0 an unrealistic network configuration. The
increase in 2diciency as ¥ grows larger is. however, very
siow. For realistic size networks, looking at figure 3. we see
that we can approximate the eficiency to be about /. Ina
singie-hop 2avironmen: siotted-ALOHA achieves a2 max-
imum capacity of /e and thus we have the intuitively pieas-
ing resuit that the maximum capacity of the siotted-ALOHA
protocoi is about /e in both singie and muiti-nop eaviron-
ments.
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FIGURE 8 _
The Efficiency of siotted-ALOHA.

4 Comparison with CSMA

In this section we wiil use the method defined in the
previous sections :¢ derive an squation for the optimai per-
formance for CSMA in a multi-hop 2nvironment ind then
will caicuiate the =fciency of this protocoi. [n 2 CSMA
2nvironment. nodes that hear an idle channe! can transmit
packets on the channei. [n a2 random connec:iad nerwork the
maximal jumpoer of nodes that couid transmil using the
CSMA protocoi is 2quai 0 the size of the maximal 2-order
independen i

set. We can caiculate the fraction of nodes in
sucn a network using methods deveicped in previcus sec-
tons. [f we imagne. in fdgure 3, the length of the 2guilaterai
riangie to be the average euclidean distance for nodes
separated by 2 hops, defined to be ¥, then z(:¥). the fraction
of nodes in a maximai 2-order independent set. can be caicu-
lated as:

-

g(N) = 2214/N

where we have used the result derived in (1] that 7 = 1.2881.
[f we assume the fraction of the nodes in a maximai 2-order
independent set that transmit is p, then the fraction of
transmissions in the network is given by g(V)p. Uniike the
derivation of the optimai protocoi however, in this case not



all transmissions are successful. We can calcuiate the proba-
biiity that 2 randomiy seiected transmitter is successiui by
using dgure 9 [n this figure we have shown the triangie

tesseilation corrasponding to a maximal 2-order independent
set. und the circuiar fesseilation that resuits when nodes on
{ the triangies transmit.

I3 \ rirac At
{ne veruces o

FIGURE 9
Tesseilation for CSMA Calcuiation.

[f we suppose in this figure that P is a transmitter, then we
can caicuiate the probability that it is successful by determin-
ing the probability that P is sending its message to a neigh-
boring node located in one of the areas labeled 4, B, or C of
the figure. We will assume a uniform probability in making
this calculation and also assume that each transmission
corresponds 10 a series of messages having infinitesimai
length. This assumption allows us to calculate the expected
fraction of messages that are successfully received before
being collided by an interfering transmission. An alternative
way 10 mode!l this is to assume that 2ach receiver captures
{is sent 0 it. Although such perrecr ume
aliamable (n real neiworks. this assumption
aicuiate an upper bound for network perror-
- 3 forms haif of the intersecton of twe unit

by a distance of Y. and can be shown (0 de

m

2= 3845 where 4f in
ALl The area of is
and thus we can wrie g

which can be soived to vyield 4 =.0467. B8=.0923. and
€= 2921, We can convert these areas into probabilities by
dividing by =/6 10 obtain P,=0891, Pz=.1762, and
P = 3379. Each area is influenced by only a subset of the
possibie (ransmitters surrounding it, and we can write the
probabiiity that £’s transmission is successfuily received as:

QO =P, =2Psll—p) = Pl =p)?

The fracuon of successtul traffic then is given by

ClN.p)=2g(N)pQ which is maximized for p = 4599 at which
point Q = 4421. Using this in the expression for C(V,p)
allows us to caicuiate the maximal fraction of successful
transmussions in the CSMA network which is given bv:

C'(N) = 4504/N

Thus we have the =ficiency of the CSMA protocol in the
multi-hop environment under ideai assumptions is apout
48.5%. This performance is in striking contrast 0 the
efficiency of CSMA in the singie-hop environment [8] where
under commoniy heid assumptions it has a throughput of
about 37%. We may aisc note that the performance of
CSMA in the multi-hop environment under ideal assump-
tons is not much greater than that of siotted-ALOHA.

3 Conclusions

In this paper we have caiculated an upper bound for
the maximal expected fraction of successful transmissions
obtained in a random connected planar packet radio network.
The method utilized is notable in that it produced an intui-
tively pieasing resuit that /'(¥) = 1/ and was simple to cal-
cufate. Using this optimal performance as a standard, we
compared the siotted-ALOHA and CSMA protocois to it,
and have shown that these protocois, for realistic networks.
have an efficiency of about 36%, and 48.5% respectively.

APPENDIX A
Caiculating A (r, 79)

In this appendix we will derive an equation for
A(ry, ry). We will use figure A.l to facilitate this derivation.
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FIGURE ALl
Deriving the Function A4 (. ry)

In this figure, T(r,. ry is the area formed by the trian-
gle of vertices po, py, and P, W(r,. r,) is the area which added
to T(ry, ry would form the sector of radius r, and angie &.
and 4(r,7,)/2 is the shaded area in C,. Since 4(r,.r/2 is
contained in a sector of radius | and angle », we can write:

ACry, r)/2 = w/2 = Wlry, ry)
but Wi(r, ry can easily be seen to be:

Wilririo =dr/2 = Tlr.ry)



We can thus derive 4(r. 7y if we can derive 2guations {or .
o.and T{r.ry. We can use the Law of Cosines repeatedly
10 ootain:

e T - sl Ert=1y

(= =ryc=2irricosi{a) = & = Cos B} }
&

T . , , st =l =iy

roo=l=rs=2rcos(m—y) = y=mcos ‘{—a_—’

=7 )

We can thus write T(ry,ry in terms of known quantities to
2et Tlry, ry=rrsin(e)/2. Combining this ail together we
nave:

2 2
ri=l=r?

) 4
i tnc—1)
{l(r..ry) = cos~! - rlcos™ | = — ! (A.l
) os™'| 5T, | = ry’cos { TR (A.1)
1, 2 112
’ rr+rt=1 °
Sl |
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