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Absiract — Spatial-TDMA is a collision-free access scheme for
multi-hop packet radio networks. In this system, nodes are
assigned specific intervals of time, from a cyclic time frame, dur-
ing which they can transmit. This assignment creates a queueing
system in each node consisting of a sequence of arrival, service
and idle epochs. In this paper we develop an approximate formu-
lation for the mean system time for messages in such networks.
This approximation is compared to simulation results and shows
a close fit.

1. DESCRIPTION OF THE PROTOCOL

We assume the nodes in a multi-hop packet radio network
are stationary (i.e. not mobile). Knowing their locations and the
capture parameter of the system [1], allows one to generate a com-
patibility marrix. In such a matrix, a 1 in the (i, /) position indicates
thatarc i and arc j of the network can simultaneously transmit
(specifically, their corresponding nodes being able to transmit in
these directions) without causing a collision. Such an arc is said to
be enabled. Using this compatibility matrix, one can generate a set
of cliques containing arcs having the property that all arcs in the
same clique “can . be simultaneously enabled without causing a
collision. If we let C, denote the i" clique, we can form a clique
cover C ={Cy,Cy -+ ,Cy) with the property that every arc is
contained in at least one member of C. For each clique in the
clique cover one can assign an interval of time, 1, from a given
time cycle (i.e. a frame whose structure repeats), during which arcs
in that clique are enabled. Since any particular arc can be contained
in more than one clique, the times during which an arc is enabled
depend upon the times assigned to the cliques of which it is a
member.

In Figure 1 we exemplify this construction. In this figure,
the six nodes (4 through £) have arcs which are labeled 1 through
10. When node B enables arc 7, nodes 4, C, and £ hear the
transmission and B's message is addressed to node £. During this
transmission, if we assume that receivers cannol capture transmis-
sions, one of arcs S or 6 can also be enabled without causing colli-
sions. In the compatibility matrix shown in the figure, then, the
7°th row contains a | in the S'th, 6'th, and 7'th positions. Each
row of this compatibility matrix is generated in a like manner.
Using this matrix, we have generated all possible maximal cliques
C,Cy -0, Cioo and from these have selected a particular clique
cover consisting of C = {C,Cy, -+, Cel.
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If we denote the cycle time of the franze as T time units,
we can allocate time durations 1, where T =3 1 to each of the

]

cliques during which their arcs are enabled. Each frame then con-
sists of a set of durations during which cliques are enabled, and the
sequence of the frame cycles every T time units. This describes
the spatial-TDMA protocol defined in [2] and in this reference an
optimal capacity assignment problem (an assignment of ¢’s which
minimizes the average delay of messages in the network) for these
networks was solved.

2. QUEUEING APPROXIMATION

In this section we will describe an algorithm for approxi-
mating the average system time (queueing plus transmission) of
messages passing through nodes using the spatial-TDMA protocol
previously described. The.queueing system at a given node created
by this protocol consists of non-overlapping input, service, and idle
periods which are enabled during specific periods of the frame. For
example in Figure 2 we have shown a queue (contained in a single
node of the network) with its corresponding frame, Figure 3.
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FIGURE 2 Model of Queue for Nodes in the Network
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FIGURE 3 A Time Frame

The queue contains two switches s and s, which are used to con-
trol the internal input and service processes. At most one of these
switches can be closed during any part of the frame since we do not
allow simultaneous reception and transmission by radios in the net-
work. Over the entire frame, external messages (from the attached
host) can arrive. As shown in Figure 2 these arrivals immediately
enter the tail of the queue at a rate of A.. This arrival process is
assumed to have Poisson statistics and thus the probability that k
external arrivals occur in m time units (denoted by Plk ext| m))
is given by:
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During the first 20 time units of the frame in Figure 3, we sec an
internal arrival interval, during which s, is closed (s, will be open)
to allow arrivals to enter from the network. Arrivals are assumed
to occur in message units (assumed to be packets, bits, etc...) per
unit time where we normalize transmission rates so that each time
unit accommodates at most one message unit. The number of
internal atrivals to the queue during the first interval shown in the
figure then will contain no more than 20 message units since it is
20 time units long. The statistics for the internal input process of
nodes in a spatial- TDMA network is a complex aggregation of the
outputs of all the previous queues in a packet's route. To generate
this internal traffic in our simulation, we assumed the traffic statis-
tics were given by a truncated Poisson distribution. In particular, if
the total time from the frame allowed for internal arrivals is m time
units, then the probability that A message units arrive during the
frame (denoted by P[ kintl m]) is given by:
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These k arrivals are then assumed to be proportionately distributed
over all the internal arrival intervals of the frame. In the frame
shown in figure 3, since m =40, the number of arrivals to the first
internal arrival interval will be given by (20/40) k = k/2. During
the next phase of the frame, we see a service interval of 10 units in
which s, is closed (s, is open) and message units are served at the
rate of one per time unit. During this time a maximum of 10 mes-
sage units can be serviced. The next phase we show is an idle inter-
val during which both s; and s, are closed and no internal arrivals
or services are allowed. Switches s; and s are then turned on and
off according to the time patterns depicted in Figure 3 and continue
to cycle every 100 time units.

An exact analysis for the average system time is mathemat-
ically intractable and thus we seek an approximate formula. For-
tunately a fluid approximation [3] to this system gives very good
results and we will illustrate this method using Figure 4. In the
fluid approximation, waiting times are calculated by assuming the
actual backlog of packets in the queue is approximated by the aver-
age backlog.
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In figure 4 we have plotted the growth of the average back-
log of message units in the system during the course of the frame
shown in figure 3. For reasons to be explained later, we have
started this growth pattern at the beginning of the last idle interval.
During this interval, since internal arrivals are prohibited, only
external arrivals can add to the backlog. If we assume the rate at
which the queue increases during an idle period to be M,, we see
that the expected backlog grows linearly with this slope during'this
interval. As the frame progresses to the first interval, the growth
rate for the backlog is given by M,, which is the sum of M; and the
additional rate offered by the internal arrivals. A service period fol-
lows in the next interval and the backlog drops by a rate of M, < 0
message units per time unit. Since external messages can'arrive
during any type of interval, M, is equal to M, less the service rate
of 1 message unit per unit time. As seen in the figure, the backlog
of message units in the queue drops to zero before' the: service
interval is finished. Internal arrivals during this time are dssumed
to be immediately serviced and thus do not contribute to the: back-
log. This process continues in this manner until the! last idle
period, at which point it starts from a zero backlog once again. We
will call a point on the frame a zero-point if, starting with an empty
queue at this point, yields a backlog of zero after exactly one frame.

We now calculate the rates described in the previous sec-
tion. First we make the following definitions: i gvair

Let 7T = Length of the time frame
7, = Total time of idle intervals per frame %
7, = Total time of internal arrival intervals per frame ~
T, = Total time of service intervals per frame

From our previous discussion we can write:

M, = \oo/ T
Mu=)\///Ta+Ml ”.,,
M, =M -1 4

The area under the backlog curve represents the number of
message-time units accumulated by messages arriving during the
frame. Dividing this by the average number of message units that
arrive during the frame, X, T, + Ao T, gives, by Little’s result [4],
the average time spent in the queueing system. Because we began
the calculation at a zero-point, message delays for all arrivals to the
frame are counted. It is clear we can always find a zero-point on
any frame satisfying 7, 2 A, To + Ao T.

This then describes the algorithm for the approximation
which we summarize as:

1. Find a zero-point.

2 Calculate the area under the backlog curve.

3. Divide by A, T, + Ay T to arrive at the average system
time.
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It is clear that the ordering of the intervals and their
lengths greatly influences the average system time. Suppose, for
example, that we change the frame in Figure 3 by coalescing all the
service and intervals together and placing them on the frame as
shown in Figure 5.
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Although it has exactly the same interval lengths, this translation
increases the average system time (in fact it is a worst case exam-
ple). In this system, any messages that arrive during the internal
arrival interval must wait at least 30 time units before being ser-
viced. If the service and internal arrival intervals are interchanged,
it is clear that the average system time would decrease by at least
this much. In fact, the system that has the minimum average sys-
tem time is one that spreads arrival and service intervals in
infinitesimal units that alternate with each other. In this way, an
arrival is immediately serviced in the following interval after accru-
ing little waiting time. 1In a practical implementation of spatial-
TDMA. however, there are limits to how small one can make inter-
val sizes since radios have a finite switching time between transmis-
sion and reception, and choosing a frame pattern that minimizes
the system time for one particular queue in the network does not in
general decrease the total average message delay for messages in
the entire network. In fact, finding the alternation that does
achieve the minimum delay for all message in the network is a very
difficult problem.

3. DISCUSSION OF RESULTS

In this section we compare simulation results with those
found using the fluid approximation described in the previous sec-
tion. Numerous frames were randomly generated that had the
same input parameters (7, 7, T, T, A, and A, and results of
the simulation checked against those of the approximation.

Three such frames are shown in Figure 6 where +1 steps
correspond to internal arrival intervals, 0 to idle intervals, and —1
o service intervals. In all three frames 7=10000, T, = 6000,
7, =2000, T, = 2000, the average service and internal arrival inter-
vals have length 200, and the average external arrival rate is 200
message units over the frame time 7. The mean service time as a
function of p for these frames is shown in Figure 7.

There are several interesting features of these curves. We
first see the close match between the simulation and approximation
thus assuring us that the approximation is accurate. The variation
between the mean system time for the three frames is very large
which shows the dependency upon the ordering and size of the
intervals of the frame. For example, for p=.7, set | has a mean
system delay of about 650 time units whereas set 3 has a value of
2800, more than four times as much. The extreme delays of the
third frame arise from the long periods (9000, 10000) and
(0.2000), during which there are no service intervals. All packets
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arriving during these periods create a backlog -that cannot ,be
depleted until much later in the frame. On the other hand, the for:
tuitous placement of intervals in frame | consists of.groups:,igjj
arrival intervals followed by service intervals that allow an accumus
lated backlog to be serviced quickly. s
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Even though there is a large variance in the curves, there is
a striking similarity in the shapes of the curves. The curves are
very well approximated by a piece-wise linear function (shown as a
dashed line in the figure). We note that they do not approach
infinity at p=1. Since other queueing systems have explosive
growth as p—I, arising from the omni-present 1/(1=p) term in
most queueing equations, this behavior is very unusual. The explo-
sive growth for most queueing systems arises from the fact that
there is variation in the arrival pattern of messages to the queue,
and as p—1 the probability that a sequence of arrivals saturates the
queue approaches 1. In spatial-TDMA however, the number of
arrivals for each internal arrival interval is constrained to be no
greater than the normalized interval length, and thus the variance
of arrival statistics is also constrained. Besides reducing queueing
delays, this restriction on the number of messages that can enter
the system during an interval also acts as a natural flow control
mechanism for messages in such a network.

The slope changes in the piece-wise linear approximation
occur when the arrival rate is so large that a sufficient number of
arrivals to an internal arrival interval cannot be serviced in the next
set of service epochs. For example, the change about the point
p =6 for frame 2 arises from the fact that for p > .6, some arrivals
over the interval (6000,7800) must wait until the next service set
of intervals (1200,2300) to be processed. For lesser values of p,
p < .6, most arrivals to (6000, 7800) are serviced in the interval
(7800,9100) and thus suffer less delay. Naturally as p increases,
the proportion of messages that must wait until (1200,2300) to be
serviced grows and so does the mean system time. Each of the
breaks in the piece-wise linear approximation can be explained in
this manner.
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In Figure 8 we have shown a frame for the same input
parameters but where the average size of the service and internal
arrival intervals is equal to 20 time units instead of 200 as in those
of Figure 6. The corresponding mean system time curve is shown
in Figure 9. We see a marked decrease in the mean system time
for this frame in comparison to the previous set of frames. This
demonstrates the dependency of the mean system time upon the
size of the intervals. If we adjust the frame to minimize the mean
system time, as shown in Figure 10 (where for illustrative clarity
we have only shown a portion of the frame), the resultant delay is
approximately equal to I time unit throughout the entire range of
p. For such a frame the majority of the arrivals to the system arc
immediately serviced in the following service interval.

4. CONCLUSIONS

In this paper we have presented a method to approximate
the mean system time for packets in a network using spatial-
TDMA. The approximation has been compared to simulation
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results and has been shown to be very accurate. The dependencie:
of this mean system time on the ordering and size of time ‘assign
ments has been discussed and the property that the mean systen
time does not explode at p = 1 has been explained.
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