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ABSTRACT -

A theoretical study is given for store-and-forward
comunication networks in which the nodes have finite
storage capacity for messages. A node is “"blocked"
when its storage is filled, otherwise it is "free." A :
two-state Markov model is proposed for each node, and
the number of blocked nodes in the network is shown also FROM OTHER IMPS
to have a two-state Markov process representation.
Digital camputer similations substantiate the theoreti-

cal results. ‘.—‘ 4.2 __. b .__l
|

INTRODUCTION

Consider a store-and-forward camunication network BUFFER ]
(e.g., see Refs, 1-5) consisting of nodes having finite |
storage space for messages. During periods of high ¥ BUFFER
traffic intensity this storage can be expected to fill i ‘ L
from time to time. In this condition the node must re- MAIN TO OTHER IMPS
fuse incaming messages (which might be accanplished by BUFFER
sending negative acknowledgments) and we then say that STORAGE
the node is "blocked." i :

BUFFER | )

As soon as one message is transmitted by a blocked
node, it becomes a "free" node. It tremains in this : l
state as long as there is at least one enpty space in @_—
storage that could be used by an arriving message. ‘ I
When the storage f£ills again, the node re-enters the
blocked state. L_ e T _J

THE MODEL IMP 7

Figure 1 shows a simplified model of such a node in FROM HOST TO HOST
the terminology of the ARPA networkl™>. The Interface
Message Processor (IMP) , when free, accepts messages Figure 1. Schematic of a Node
into its main storage from two sources: (1) other

IMPs like itself, and (2) a HOST which generates and
receives messages (as a source and terminal) and can-
municates with the rest of the network by means of the

IMP. Message bits are sent 1n parallel to the message difficult for at least three reasons. First, it involves

buffer serving the appropriate output line, as deter- networks of queues, for which only stationary results at
mined by the final destination of the message, and are  best can generally be obtained. Second, the pertinent
then transmitted serially to that neighbor. Any of stochastic processes are dependent., for if a node becanes

these neighbors can become blocked thus preventin blocked, it cannot accept messages from its neighbors
the use of the output line feedjng'swh nZighbors.g and their storage will tend to £ill at a faster rate.
Finally, it is a transient queueing problem and even the
In this paper we study nodal blocking caused by the simplest of these is very c}ifficult to solve. (For exam—
finite storage roam for messages in the IMP and the ple, the queueing system with Markovian arrivals, a
overutilization of the system. By overutilization, we single exponential server » and ‘mll_mlted waiting roam ha
mean that when the node is accepting messages, its aver- modified Bessel functions in its time dependent solution o)
age arrival rate equals or exceeds its average service ; :
rate (which is the total output channel capacity divided Since we cannot solve the problem exactly, our goal is

by the average message length). Elementary queueing to make good approximations that allow us to analyze the
theory® shows that if (1) the system is underutilized,  System and characterize its blocking behaviar in same way.
To this end we make the following assumptions:

and (2) there is storage space for approximately twenty
messages or more, then under fairly general corditions

there will be essentially no blocking. 1. The HOST cannot became blocked (it is an infinite

sink)
Nodal blocking is a transient effect which should oc-
cur only at peak hours during the day in a well-designed
system, but once started it could propagate in both
space and time. The analysis of this propagation is

2.a. Input traffic fram the HOST is Poisson

b. Traffic on all lines has the same average rate
so that total average traffic into each node
is o messages/sec.

*This work was supported in part by the Advanced Re— 3.a. Message lengths are exponentially distributed
search Projects Agency of the Department of Defense :
(DAHC-15-69-C-0285) ad a National Science Foundation
Traineeship.
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b. Service (transmission) time on any line is
therefore exponentially distributed such
that for a node with k blocked neighbors,
‘the rate at which messages exit fram that

node is u(k) messages/sec.
4. Probability of an empty queue in the IMP is
approximately zero (since the system is assumed
to be overutilized)

ANALYSIS AND RESULTS

Under these assumptions we arrive at a simplified
blocking model for a node in the network, and its de-
scription as a two-state Markov process is given in
Figure 2. If the node is blocked, i.e., in state b,

)\(k)

Figure 2. Blocking Model for an Imp

it beccames free in the next instant of time At with
probability u(k)At where k is the number of blocked
neighbors it is experiencing at that time. Similarly,
if the node is free, i.e., in state £, it becames
blocked }n the next instant of time At with probabil-
ity A(®)aAt where k is again the mumber of block
neighbors. 2

Below wa show the appropriateness of this model.
First, we cequire the Laplace transform of the inter-
departure time probability density = D(s). For any
node let n = Pp[non-ampty node] and let the Laplace .
transform of the probability density of the interarrival
time process be A(s). Because we have assumed that the
service time is exponential with parameter uk, we
know that the Laplace transform of the de?arture Erocess,
conditioned on a non-empty system is p&)/g + (k)

Therefore,
D(s) —-—(Ey"”(k) (1 - p)A(s) —(—,-“(k) (1)
s) = + - p)A(s
s+ s+yu K

By assumption (4) we have p ¥ 1
*. D(s) ——TT“O() (2)
.". D(s) =
s+ yu k

which says that the departure process is a Poisson
stream.

We have assumed that the traffic on all lines has
the same average rate. If, for example, every ncde has
exactly four neighbors and one HOST, then there are five
output lines from each node. All of these lines are
equivalent (except that the HOST cannot became blocked)

39-

and, by the assumption of exponential message lengths,
the departure process fram each output line constitutes
a Poisson stream when that neighbor is not blocked.

RS - k (0

where u(o) is a given system parameter and represents
the maximum message departure rate fram a node. This
set of numbers is merely an illustration; any combina-
tion can be treated by this model. These results show
that we can approximate the time spent in the blocked
state as being exponentially distributed with parameter
(k)
H .

k=0,1; 0eepd (3)

The time spent in the free state, however, is distri-
buted as the busy period in a queueing system with finite
queueing room for custamers, as we now show. Consider
the state transition diagram or Markov chain model for
suwch a single node queueing system shown in Figqure 3a.

o g
i i ® ® © ®

b) DUAL QUEUE STATE TRANSITIONS

Figure 3

The numbers inside the circles represent the mumber of
custamers in the node. Customers arrive in a Poisson
fashion with parameter o, and depart after receiving
service (exponentially distributed with an average of
1/u seconds). A busy period begins when a custamer ar-
rives to find an empty system (at which time he immedi-
ately enters the service facility). Customers arriving
during his service time form a queue behind him. With
each arrival the system moves to the right along the
state transition diagram, because the nunber in the sys-
tem is increased by one, and with each service comple-
tion, i.e., departure, it moves to the left. The busy
period ends the first time the system goes empty after
initiation of the busy pericd.

We now consider a dual queue in which the roles of
service ard arrival are reversed, and the nunbers inside
the circles now represent the mumber of empty places in
storage that could be used by arriving messages (see
Figure 3b). The free period of the IMP begins with the
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departure of a message from a previously filled system,
i.e., no empty places for arriving messages. With the
transnission (departure) the system moves from state 0
to state 1. It continues to move to the right with each
transmission and to the left with each arrival. The
free period ends the first time the system returns to
the 0 state. The correspondence between the primal and
dual queuves is perfect; thus any results obtained for
the busy period in the primal system are applicable to
the dual queuve free period in the IMP simply by substi-
tuting p(k) for o and o for I, as in Figs 3a, b.

The busy period for a finite queueing room system is

‘difficult to cbtain, but the result for unlimited queue-

ing room is well known. The probability density of the
length t of the busy period in such a system is

o ausads Mo ) 4)
t/p
where p, the utilization factor = (o/n) <1 and
I.(x) is the modified Bessel function of the first

k%“.nd, of order one’/. If the size of the queueing room

is greater than 20, the solution for unlimited queueing
roam is a good approximate solution to the limited queue—
ing room problem. (This follows since we have assumed
Plempty IMP] = 0; but the P[empty IMP] corresponds to
the probability of being in state N(i.e., all N spaces
are empty) in Figure 3b, and thus an increase in N will
not seriously affect our results.) Since we have as-
cured overutilization, we have (u{0)/0) < }, and we
are justified in substituting this (or u(k /o) for p.
Thus we get the following for the probability density of
the length t of the time spent in the free state:

- (k)
-}Z |~y © S &Yy
M
(k)/o approaches 0, i.e., as the system
this density approaches that
of the exponential distribution. To arrive at a more
tractable model, we approximate the free period distri-
bution by the exponential distribution having the same
mean value. The mean value of the busy period in the
original system is easy to cbtain, and is given by
1/u(1-p) . Therefore, as an approximation to the free
period in the IMP, we take an exponential distribution
with mean value l/(o—u(k)) , i.e., with a parameter,

AT

For the marginal case, 0 = u(O)

theary® shows that we must take

p(t) = (5)

As the ratio u
becomes more overutilized,

(6)

elementary queueing

4

NORE:] 0)

g (7

for o = |

where ' N is the size of the storage capacity in the
IMP.

Our model for the blocking IMP is thus a two—-state
Markov process or, in the language of renewal theory,
an alternating Poisson renewal prooessa. One way to
describe the dynamics of a network of such nodes is to
examine the probability that any given node is blocked
at same time t. Consider a node with four neighbors
nurbered 1 to 4:

2

Let PX(t) = Pk neighbors blocked at time t] (8)

and let p(t) = Plnode blocked at time t] (9)
Then, froam elementary considerations, we have (correct
to within o (At))

4 4
p(trat) = (1-p(t) 2 P e)r ®at + po) @~y X )1 X at)
=0 k=0

vhere fran By, (3) p® = u©® - g5
and fram Eq. (6) A(k) =0 - u(k) =0 - u(o) + (k/S)u(o)
for o > u(o).
We also note that
o el g g (10)
3 o 4
s, R AXL B p(t))zpk(m(k)
k=0
R ()
- plt) TP (B)u
k=0
Ietting At approach 0, we have
4 4
dp (t) k (k) (k) o L)
= p®) TPE® O™ + 1) + FPTRIA
—SE— kg‘o k=0
4 ¥ 4 x © . k(0
= —op(t) TP() + TR () (0 -u T + U
k=0 k=0
(0) 4
o sontey e = w0 a3 ey (11)
5 k=0

This can be simplified by noting that

4
£ mmber of blocked neighbors at time ] = 3" kP*(t) (12)
=0

where E denotes expectation. Define the indicator
function.

1 if node n is blocked at time t

fn(t) T 0 otherwise

Now let

pn(t) = P[node n is blocked at time t]

then E[fn(t)] = pn(t) (13)
Further, from Bg. (12), we have that
4
T reK () = E(T £4(8)
k=0 neN
(14)

= L E(EL(t)
neN
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where N is the set of neighbors for this node (which we
nunber 1,2,3,4). From Egs. (13) and (14) we get

4
kgomk(t) = py (£) + Py(£) + pa(t) + py(®) (15)
Finally, fram Egs. (11) and (15) we have the result

B~ () +0 - v

(0)
+ U (p) (£) +p,(8) + p3(E) +py(0))  (16)

This relation can also be derived from epidemiology by
considering nodal blocking as a deterministic epidemic
without migration and with but two kinds of individuals,
infected and suscept_ibleg. :

Adjacent nodes have nearly equal probabilities of
being blocked. Consider the case when all of these
probabilities are exactly equal (as an approximation).
Then from Eq. (16)

d—P—-—dt(._t) = -op(t) +0 - u(o) o %u(o)p(t)

(0)

e (e % u(O))p(t) L gise

which has the solution

4 (0)
- gou@ ] -t guhe O
P(t) = p(o‘ i —’—‘Z__(ET e +-—-—a——(ﬁ)
g - -5- u g = '5- H

17)

Now consider the alternating Poisson renewal process
shown in Figure 4. There are two states, called (B) and

Figure 4. Network Model

free (F). If the system is in the blocked state (B) at
time t, it goes free Sstate F) in the next instant At
with probability (u(®)/5)st. In similar fashion, the
probability that it leaves the free state and re-enters
the blocked state is (0 - u 0)yat. Therefore, the
probability that it is in the blocked state at time

t + At is

(0)
pglt + 46) = p(t) (1 - ES_ at) + (1= py(t) (o - 2@y

. () 4

- () - Fu® + g -

.
or
4 (0)
(017 - )t (©
m ) = {p ()= e - P = :
ol %H(O) o= gu(O)

(18)

This is the same as Eq. (17) which was obtained for the
probability that a node is blocked at time t! Ina

large homogeneous system the fraction of blocked nodes
may be closely approximated by the probability that any
one of them is blocked. Therefore, the fraction of
blocked nodes at time t —In a large tniformly connected
{i.e., two-dimensional lattice) network is approximately
equal to the probability that the two-state Markov process

shown in Figure 4 is in the blocked state at time E.
Thus we may take this two-state Markov process as a model
for the network.

So far we have presented only aggregate results. To
obtain the probability that any given node in the network
is blocked at time t we must consider a system of equa-
tions of the form (See Eq. (16))

V dp; (t)
S—= - opy(t) +0 - w2

(0)
+ B (py(8) + B (8) + Ry (8) + By(8)

for each mode i in the network with neighbors j, k, %
and m. These equations are obviously of the form

B(t) = AP(t) + C (19)

If there are M nodes in the net, then P(t) is the

M x 1 matrix whose i™' component is the probability that
node i is blocked at time t. A is an M x M constant
matrix and C isan Mx 1 constant matrix. The solu-
tion is well known:

p(t) = Atp(o) + At - nC (20)

For a small net this solution poses no difficulty, but
for a large one the required matrix computations rapidly
get out of hand. There are sane special cases which are
solvable, however, and we obtain the solution for one of
these below.

Consider a network consisting of 1024 nodes arranged
in a 32 x 32 (n x n) grid. For this system the matrix A

is n® x n? or 1024 x 1024 and takes the following form:

D A i
ADA O
A= ADA : (21)

eow

ADA
&

g
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" n

ab
bab O
where D = bab (22)
O bab
| ba_l n xn
and : A=bIn (23)
u(0)
where a=-o,b=——5—-—, a.ndIn is the
n x n identity matrix (25)

This observation holds for a square grid with any mmber
of nodes n on a side. (See the Appendix for the cam-
plete solution for P(t) for arbitrary n.) This case
of n = 32 was simulated and is described in the follow-
ing section.

SIMULATION RESULTS

Simulation of a network of 1024 nodes employing the
Markovian inter—event time assumption substantiates the
approximations described in the theoretical results
above., Two different sinwulation programs have been run
on the UCLA XDS Sigma-7 computer.* The first was for a
network arranged in a square grid 32 x 32. Each node is
connected to its four nearest neighbors (a lattice) ex-
cept in the case of nodes along the border which have
only three nearest neighbors (or two nearest neighbors
in the case of the four corner nodes). When a node
changes state, new event times are chosen for it and for
all of its nearest neighbors based on the new number of
blocked neighbors. The memoryless property of the expo-
nential distribution simplifies the calculations.

The second program simulated a randamly connected
graph in which each node was given exactly four neigh-
bors. ,

. Camparison of the two-state Markov process model and
the simulation results for the lattice and the randam

graph are in Figure 5 for one set of parameters
o and u( starting from a net that is campletely
blocked. Figure 6 shows the results when the network

begins with all of its nodes in the free state. In
Figure 7 results are campared for the model and the two-
dimensional integer lattice in which each node is as-
sumed to have eight neighbors. This was accamplished
by extending the nearest neighbor definition to include
nodes which are diagonally adjacent. The results in

Bqg. (18) are extended in the obvious way. Figure 8 com-
pares simulation results on the lattice of degree four,
when a free node with k blocked neighbors is consider-
ered k-fourths blocked, to the predicted trajectory based
on a non-linear "partial blocking” model. The agreement
with the simulations is generally good, and the model is
sufficiently general to treat a variety of cases.

CONCLUSIONS

Two new models that may have application to store-
and-forward communication networks are presented in this
paper. The probabilistic model for nodal blocking due
to finite storage space is shown in Figure 2. The secord
model, and the main result of this work, is that the
fraction of blocked nodes in a network of such nodes has

*During simulation the net activity was displayed on
a Digital Equipment Corporation 340 Precision Display CRT.
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a two-state Markov process representation (Figure 4 and
Eq. (18)). Figures 5-8 verify that the network model
campares well with results obtained from the simulation
of a network of two-state Markovian nodes in which the
time spent in either state is a function only of the
state and the nuber of blocked neighbors. Finally, the
model is sufficiently general to treat a variety of net-
work configurations and parameters.
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APPENDIX

We must first find the eigenvalues Y., of D which
are the solutions of |D - yI| = 0. Let a stand for
a-y in D; we wish to £ind the zeros of the determi-
nant of D. Expanding by the elements of the top row,
we note the following recurrence relation for the deter-
minant A, of the n x n matrix D:

" 5
A, = abyy - b°An-2

with initial conditions Ay = a, 8g =1, A3 = 0. Fol-
lowing Grenander and Szegolowe substitute a = 2b cos 9,
assume a solution of the form Ap = p, and solve the

resulting quadratic in p. After satisfying the initial
conditions the result is simply

An= bn sin(n+ 1)8

which vanishes for 6 = vrn/n+l =01, 2, ey, D

Therefore, the eigenvalues of D are

a - 2bcos . v=d,2y ey

n+ 1l

which are all distinct. The eigenvectors are the solu~-
tions of -

ab O -1 XV:J le
s X2 X2
bab Xl =Y |X3
O »a| [t X
L i J e
It is easy to verify that the normalized solutions are
X = (=K o kw
n+1 n+l
2

so that the (i,j) element of eP is

n
oo Y
ei,j—vz_: eV Xyi X

=}

n
=il -1

and Di,j_v‘él(yv) X1 X3
where

(=n"% . ke

VAl =
A /;‘ﬁ n+1l
. 2

Similarly, it is easy to show that the transformation
R*AR (where R* is the transpose of R) where

Yv=a—2boos

Xy - STy o+ KT |
KoL, +e+ Xly o ¥n2In

R E with X, as given

Lxlnln aew )ngn coe )g'mln

above reduces A to the quasi-diagonal form

ST O

sty

G
where Mv=D"2b°°S'n—Z'"‘1‘In

Since M, is equal to D with a change of the diagonal
element, we have that the (k,1) element of the (i,3)
block of e is

n n
3 o _—
e?,j;k,l = élxvixvj p);jlexp(a 2b cos—T -2b cosn%gxpkxpl

and

-

n n
=1 = & v =1
A1 ™ iy I (% R -2 cosgy) L

n=1

where
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A ST P e TS

= (—l)n-k sin kv

K /B+1 n+1

2

In our system a=-0 and b = u(o)/S so the time
constants, i.e., the arguments in each_of the exponen-

tials appearing in the solution for eAt are of the
form

i ZU(O) v vjn _
i sk ot R R b P

which takes on its smallest absolute value for

Vi =V =n. Thus the motion of the system is bounded
by

s T e
s el LA F

The number n is the square root of the number of nodes
in the square lattice. This result shows that as n » «
the system attains its steady state at a rate

exp - (c -%u(o))t

which agrees with simulation results for n = 32.
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