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Abstract

Preserving database consistency is a major task in a distributed
environment where sites may contain portions or complete repli-
cas of databases and where no centralized control is allowed for
reliability reasons. This paper presents some preliminary results
from a queueing theoretic analysis based on Le Lann’s ticketing
algorithm. In this algorithm, as in others, database requests can
be received at a site in an order different from that in which they
were generated due to variable communication delays. One
method to ensure mutual consistency between two or more copies
of the database is to require that at each site requests are pro-
cessed in the order in which they originated and not in the (arbi-
trary) order in which they arrive at the database copy. We con-
centrate in this paper on the characteristics of the disorder intro-
duced in the database request sequence by the network delays.

The results presented here are expected to be useful in a total sys-
tem performance analysis.

1. Introduction

The development of efficient, reliable computer communica-
tion networks (both public and private) has led naturally to
the problem of the distribution of resources among the hosts
attached to the network. In particular, the distribution of
data has triggered a great many theoretical and experimental
investigations. In addition to reliability, fault-tolerance,
responsiveness and other network objectives, distributed
database systems are subject to severe integrity consistency
constraints. Preserving the database consistency becomes a
major task in a distributed environment where sites may con-
tain portions or complete replicas of databases and where no
centralized control is allowed for reliability reasons. Basi-
cally, consistency refers to two constraints: internal consistency
and mutual consistency. The first is fundamental to database
systems, whether distributed or not, and is related to seman-
tic requirements of the database. The second is inherent to
the distributed environment where the variable nature of
intercommunication delays between sites may interfere with
the correct order of update operations. Briefly speaking,
mutual consistency means that all replicated portions of a
database must converge to identical copies should update
activity be interrupted.
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A number of important concurrency control schemes have
been developed in order to preserve the mutual consistency
of distributed database systems, and a comprehensive discus-
sion of proposed concurrency control algorithms can be
found in a recent report by Bernstein and Goodman [1]. As
the number of schemes grows it becomes imperative that
some analytical quantitative tools become available to help
identify performance characteristics of the various schemes.
Work by Lee [5] dealt with a comparison of the network
semaphore scheme, the hopping permit scheme and the
adaptive hopping scheme. Garcia-Molina [2] developed
queueing models for some centralized schemes which he
compared with some decentralized voting schemes. Gelenbe
and Sevcik [3] defined the notions of coherence and prompt-
ness for redundant (multiple copies) distributed databases.
They developed a queueing model that permits the analytical
evaluation of these quantities. Their model relies on the use
of perfect time synchronization through the network, and
provides an interesting approach to capture the disparity of
information at a certain time between real copies and an ideal
instantaneously updated copy. Such dispersion is in fact due
to variable network delays.

In this paper our main focus will be to identify the effect of
network delays on the order of updates. Our ultimate goal is
an analysis of the "ticketing mechanism" developed by Le
Lann, a version of which is being implemented in the Sirius-
Delta Project at INRIA (Institut National de Recherche en
Informatique et Automatique, France) [6,7]1. While our
results here apply to other concurrency control algorithms,
we will assume Le Lann’s ticketing mechanism for the sake
of a concrete example. Briefly speaking, we consider a fully
redundant multiple copy distributed database system.
Updates to the data base generated from independent sites
are allocated sequentially increasing ticket numbers before
entering the network. A circulating token is in charge of
delivering tickets. On the data management side, at each site
updates must be processed according to the order of their
associated tickets so that mutual consistency is preserved. In
another version of this concurrency control scheme updates
are processed in a temporary workfile in the order of delivery
from the network but they become final only when conflicts
are no longer possible, ie., when all lower order (ticketed)
updates have also been processed.

In this paper, updates from all sites are modelled as a Pois-
son stream of customers to an infinite server system that
plays the role of the network. Special sfar customers are
identified as those that leave the network "in order" with
regards to lower ticketed updates. These customers can then
be safely served by the data base manager (according to the
initial version of the algorithm) and mutual consistency is
maintained. Their end of transmission through the network
will make all consecutive higher order updates that previously
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departed the network eligible for service. The output process
of the star customers, as well as the distribution of the
number of customers which become eligible with the star
customer, will be characterized under an exponential network
service time assumption. The distribution of the waiting
time of out-of-order customers to become eligible for service
by the database manager is also provided as well as other
interesting analytic properties. Numerical results are also
given which exhibit the behavior of this loss-of-order
phenomenon that is inherent to networks.

I1. The Model

In this section the main features of Le Lann’s ticketing algo-
rithm are first presented. In particular, functions that pertain
to the ordering of updates (i.e., assignment of increasing
numbers) and the actual utilization of that order at the data
management end are reviewed. Reliability features will not
be considered in this paper. Second, a queueing model is
developed to basically capture the effect of order, or more
correctly, of "disorder". The concern here is not to model
the complete system which is, however, the ultimate goal of
the research.

I1.1 Basic Features of Le Lann’s Ticketing Algorithm

DATABASE
COPIES

TRANSACTION
HANDLERS

DATABASE
MANAGERS

INTERACTIVE
USERS

xXDOg—-mz

Fig. 1. Fully redundant distributed database system.

The system considered and shown in Fig. 1 is composed of
dispersed interactive users that forward their requests to local
ransaction handlers. Transaction handlers interpret and exe-
cute user’s requests that may involve reading, updating,
deleting, and creating data items in the database. Full copies
of the database are stored and controlled by database
managers located at storage sites. Communication between
sites is handled by a data communication network. We are
concerned here with updating requests where the order of
execution by the database managers is crucial in order to
preserve mutual consistency. (Other types of requests will
be ignored in the analysis below.) Internal consistency is
taken care of through locking mechanisms; however this may
lead to deadlock situations which can also be prevented
through the preservation of the order of execution.

The mechanism used is called the circulating sequencer. Tran-
saction Handlers are conceptually organized .. a virtual ring.
A particular message called the token circulates in the ring.
The token delivers sequential and unique integer values
called rickets. Upon reception of the token a transaction
handler will acquire tickets for its pending operations on the
database (note that tickets serve to time stamp operations on
the database). The sequence number is incremented and the
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token is passed on to the successor transaction handler on
the virtual ring. Since we consider a fully redundant data-
base and only update operations, all such operations must be
performed on all copies of the database. Two basic strategies
are possible by the database manager: either i) perform
operations only according to increasing sequential ticket
numbers or ii) perform the operations as they arrive on
temporary space and roll back in case a later operation (i.e., a
smaller ticket number) would conflict with some already exe-
cuted operations.

Other details on the breakdown of operations into smaller
indivisible units and on "commit" protocols are omitted here.

It is now clear that the order in which operations reach the
destination database managers is of extreme importance in
the study of the behavior of this ticketing algorithm. In what
follows we develop a queueing model of that process. which is
based on the first, but probably more conservative, strategy.
Extensions of the model to include the second strategy are
currently under investigation.

11.2 The Infinite Server Model

COMMUNICATION
NETWORK

DATABASE MANAGER

1)

“IN-SEQUENCE" SERVER

TICKETED UPDATES

£0)
AN S

STOCHASTIC ARRIVALS
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NETWORK DEPARTURE PROCESS,
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DATABASE MANAGER
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Fig. 2. The infinite server queueing model.

In order to study the basic behavior of the out-of-order prob-
lem we model the communication network as a single queue-
ing system with an infinite number of servers (see Fig. 2). The
generation of updates and their numbering by the external
transaction handlers is modelled as a stochastic process to the
infinite-server system. The numbering corresponds to the
assignment of increasing successive numbers to consecutive
arrivals. The first "update" (i.e., the first arrival) will be
assigned "ticket number 1", the second, 2 and so on.

An update will be referred to as a customer in the balance of
this paper. The customer with sequence number n will be
denoted by C,. The service times of customers (i.e., the
time an update spends in the network) are random variables.
Due to the random nature of network delay, a customer, say
C,, may leave the network before some other customers
holding lower ticket numbers. However, as mentioned
above, the receiving database manager only serves customers
in increasing sequential order. In this case C, will be
referred to as an out-of-sequence (or interchangeably out-of-
order) customer. Let d, be the departure time from the net-
work for C, (ie. it is the arrival time to a database
manager). We can now state the following definitions:



Out-of-Sequence Customer
C, is an out-of-sequence customer iff 3 k<n s.t. dy>d,
In-Sequence Customer or Star Customer

C, is a star customer iff Yk <n d <d,

In other words C, is a star customer if he departs the net-
work after all lower ticketed customers. As an example con-
sider the following initial input sequence:

1234567891011 12
A possible output sequence may be:
4231_6§7'10912§1.1

The numbers reflect, from left to right, the increasing value
of network departure times. Cj is the first out and Cy; the
last out. Note that 1, 5, 7, 8, 11 are star customers whereas
all others are out-of-sequence customers. The database
manager, being an in-sequence server, Will initially receive
4,2, 3, but only when 1 arrives will service begin. Hence
the database manager is not work-conservative in the sense
that work may be present while the server is refusing to do
it. However, a free server never refuses work to an arriving
star customer, so that after the star customer is served some
of the waiting out-of-sequence customers may become eligi-
ble for service. Let us define eligibility more formally.

Eligibility: A waiting customer, say C,, at the database
management station is eligible for service if for all k such
that k<n C, has been either served by the database
manager or is waiting to be served. Consequently if C, is an
out-of-sequence customer which arrives at the database
management station then he must wait until after the arrival
of all customers with lower ticket numbers. It is obvious
that C, will become eligible upon the arrival of a star custo-
mer. However it is also true that the arrival of a star custo-
mer does not necessarily provoke the transition of all non-
eligible customers waiting at the database station to the eligi-
ble state. In the previous example:

Upon arrival of: Customers that become eligible:
2,3, 4
6

3 =y

5
7 o,
8 9, 10

11 12
Note that when Cg arrives, only 9 and 10 become eligible
whereas 12 becomes eligible only when 11 arrives.

As far as the service requirements are concerned, the data-
base manager sees the arriving process of customers as a
"bulk arrival' process where the head of a bulk is a star cus-
tomer and the rest of the bulk is composed of the customers
that become eligible upon arrival of the star customer. By
definition:

In-Sequence Bulk (ISB): The ISB of a star customer C, is
composed of the sequence of consecutive higher ticketed cus-
tomers that depart the network before C, (i.e., they arrive at
the database management station before C,). The ISB of a
star customer C, is exactly of size k iff
C,+1, Cyi2s - + + » Cpri depart the network before C, and
C,4x+1 departs after C,. (It is immediately apparent that we
can similarly define the ISB for an arbitrary customer and in
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Section III we will have occasion to use this notion. How-
ever, unless explicitly stated, ISB will be used only in con-
nection with star customers.)

Bulk: A bulk is composed of an ISB and the corresponding
star customer. Let us denote by S,, the m™ star customer;
then in the previous example we have:

STAR ISB BULK

CUSTS. ISB SIZE BULK SIZE
S Cy C,, C3, Cy 3 G1::C2. 030 C 4 4
s o G T P 2
Sl o |- 0 |G 1
S4 Cy Cy, Cyo 2 Cg, Cy, Cyo 3
Ss| Cn Cn 1 | Cn, Cip 2

In order to analyze the queueing system at the data base sta-
tion we need to characterize the following:

i3 The network departure process of the star customers
from the network.

ii. The distribution of the ISB size of a star customer.

iil. The time an out-of-sequence customer spends at the
database management station before it becomes eligi-
ble.

Let us note that the time spent waiting for eligibility is only
one component of the total waiting time of a customer at the
database management station. In fact we may view this com-
ponent as the waiting time in a "virtual bulk collection box"
as shown in Fig. 3. This time will be referred to as the eligi-
bility waiting time. Note that the size of the ISB of a star cus-
tomer provides a quantitative measure of the magnitude of
the network disorder, whereas the virtual waiting time pro-
vides a measure of the duration of that disorder. Next we
proceed with the analysis.

BULK ARRIVAL PROCESS

O
R
| |
O G
' I‘- _____ —:
VIRTUAL BULK
O COLLECTION BOX DATABASE SERVER

NETWORK

Fig. 3. Virtual bulk collection box.

III. Analysis

First we introduce some assumptions with regard to the dis-
tributions of the interarrival times and service times of custo-
mers in the network. In this paper, we use the Markovian
assumptions for both distributions. Some more general
results will be presented in another report.



The interarrival times and service times of customers to the
network are independent and exponentially distributed ran-
dom variables with parameters A and p respectively. Denot-
ing the interarrival time density function by a(t) and the
network service time density function by / (x)

a(t) = xe™™ 120

fG) = pe ™™ x20 (1)

In other words the communication network is modelled as an

M/M/oo queueing system. For an M/M/e in steady state

the probability of having j customers in the system is equal

to the probability that an arrival finds j in the system and is
given by:

i

o= I e’ (2)

where p = M.
I11.1 Probability of a Star Customer: P»

Theorem 1: The steady state probability that an arbitrary
customer is a star customer is given by

| Senk

P

P. = (3)

Also the average bulk size is
Gl (4)
P 1=l
Moreover the probability density function (p.d.f.) of the
(network) service time of a star customer is:

o) s g )
P
Proof: Recall that a customer is a star customer only if it
departs the net after all lower numbered customers. Conse-
quently, the only customers to consider are those who are
still in service (in the network) at the arrival time of our
arbitrary tagged customer. If we condition on the fact that
there are k customers at the arrival time, in order for the
tagged customer to be a star its service time must be greater
than the residual service times of all j customers. Due to
the memoryless property of the service times, this is true
with probability 1/(j+1), hence Plarbitrary customer is a

star | he finds / in the system] = s
Therefore

(1.1‘
j+1

P=3

=0

S

substituting Eq. (2) above and summing yields Eq. (3).

Obviously, to each star customer corresponds a bulk with
regard to the arrival process to the database system. Hence
the departure rate of bulks is

Ae=AP. also A=A\.C
which proves Eg. (4).

Let F(s,x) be the joint probability distribution function that
an arbitrary customer is a star customer and has a service

time, x, less than or equal to x and let f(s,x) be the
corresponding p.d.f.; thus
f(s,x)dx = Plarbitrary customer is a star, x < x<x-+dx]

If we condition on the fact that the customer finds j in the
system, then

fs,x) = Ef(s,x | e, (6

j=0
But,
£ (s,x|j)dx = Plcustomer is a star, x < x<x+dx

| customer finds j customers in system]

= P[x< x<x+dx | customer is a star, customer finds j]

- Plcustomer is a star’| customer finds jl

If x|, x5, - - - ,X; are the service times of the j customers in
service upon arrival, then the first term of the product is
equal to

’j]

Plx<x<x+dx | x2x i=1,---

= Plx<x<x+dx | x=>max{x]}]

Plmax{x )< x | x<x<x+dx] Plx < x<x+dx]

Plx>max{x}]

The x;’s i=1, -
tributed and thus
Plmax{x,}<x] = [F(x)V

Note also as mentioned above that

- ,j and x are ii.d.’s and exponentially dis-

Plx> max {x}]
Pl o

i=

= P[customer is a star|customer finds j]

fiaril
Consequently
fGs,x]j) =[FG)Vf(x) )
Substituting Egs. (2) and (7) into (6) we find
Fs,x) = f(x)ePU—FG) = | pmux gmpe™™ (®)
Finally
£ (x)dx = Plx <x<x-+dx | customer is a star]
which is also equal to
o = PSSctar, cutons s
hence
fiG) = Lsx) ©
(]



111.2 Distribution of Bulk Size

Before we derive the distribution of the ISB size of a star
customer, we prove the following lemma.

Lemma I: In steady state, the joint probability density func-
tion of the ISB size of an arbitrary customer and the interar-
rival time to the network between this customer and the first
corresponding out-of-sequence customer given x, the service
time of the arbitrary customer, is:

Mo [f Fowal] 0-FG-0) r<x

k!
(10)

hk (f ‘X) - k k
% e M [foxF(x—u)du] 1=>x

Also the marginal distributions of respectively the bulk size
and the interarrival times are:

heClx) = [ meld an

and
hGelx) =3 h(elx) 12)

k=0

Proof: Let C, be an arbitrary tagged (selected) customer
denoted by TC, whose network service time is known and
equal to x (see Fig. 4). As defined earlier, the ISB of C,,
even though C, is not necessarily a star customer, is of size
k iff Cpi41y Cpyas - -+ »Cos leave the network before C, and
C,+x41 leaves the network after C,. C,ix+1 is, therefore,
the first corresponding out-of-sequence customer (denoted
by OSC). Let t be a random variable that represents the

interarrival times to the network between the TC and the
OSC. Also let g|x be the random variable that represents

the TC’s ISB given his service time x; then by definition
b (¢ | x)dt = Plgl, = k, t< t<t+dt | x=x]

Let 0 be the time of arrival of the tagged customer, and x its
given service time. Two cases must be considered according
to whether or not the interarrival time is less or greater than
x. (See Fig. 4).

i) t<x: The probability of the above equation is
equal to the probability of two disjoint events:

1) The event of k arrivals in (0,7), and one
arrival at ¢,t1+dt.

2) The event that the k arrivals depart before x
and the arrival at ¢,t+dr departs after x.

The two events are independent due to the fact that service
and arrival processes are independent. The probability of the
first event is

(0
k!
As for the second event, we know that the k arrivals gen-
erated by a Poisson process in (0,r) are uniformly and

independently distributed point processes in (0,1). Hence
the probability that they all leave before x is

g du £
fO F(x—u)—t—]

e Madt

k IN-SEQUENCE
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Case b> t>x

Fig. 4. In-sequence bulks.

Moreover the probability that C,ix+1 is an OSC (i.e., that it
leaves after x) is

(A-F(x—1))

The product of the three expressions above is exactly
hy (¢ | x) for t<x.

ii) t>x: In this case the two events are:
1) The event of k arrivals in (0,x), zero arrivals
in (x,?) and one arrival in (¢, t+dt)

2) The event that the k arrivals leave before x

The probability of the first event is:

(Ax)* e X o AN=X) )\ gy
k!
Similar to the previous case, the probability of the second

event is
p d d k
[ ik F(x—u)—-’il
0 X

The product of the two above expressions yields A (¢ x) for
t>x. Finally the marginal distributions of Eqs. (11) and
(12) are direct consequences of Eq. (10). Let us note, also,
that the proof of Lemma 1 does not make use of the
assumption of exponential distribution for the network ser-
vice time distribution of the selected arbitrary customer since
that time is fixed.

In the problem being considered we are mainly interested in
finding the ISB size of a star customer, i.e., the selected TC



must be a star. Let

= P[ISB size of a customer = k | customer is a star]
Then:

Theorem 2: The probability density function of the ISB size
of a star customer in steady state is given by

o 72._ e et gy a1
where
b C1x) = 1 60 = fyy (%) (14)
and
)\k 5¢ k 5
I (x) = = [fu=oF(x—u)du] e M
I D [ : ]k T
+f,,0 [Ff? A fu—-—O Fx—u)du| |dr {13)
also
= Plg2k]l = wa e (e e e gy (16)
L é’/ PoJx=0 ¥ i /

Proof:  The proof is obvious because of Lemma 1. The
chosen TC is now a star customer and what is needed is the
unconditioning of the marginal probability distributions of
Eqg. (11) with respect to x. Since x is the service time of a
star customer its p.d.f. is given by Eq. 5 (Theorem 1).

Because of Lemma 1
= J, hC1xs 0a an

The substitution above of f; (x) by its expression in Eq. (5)
proves Eq. (13). Eq. (15) is a direct consequence of Egs.
(10), (11) and (13) but the proof is omitted here (see Refer-
ence [4]). Eq. (16) results directly from the above cori-
siderations.

Note that it can be easily checked that >o0°&=1 and that
qo=1. Moreover, the average ISB size of a star customer is
given by:

oo

Ere D k™ 5.0, (18
k=1 k=1

From Egs. (16) and (18), and interchanging the integral and
summation signs, we find

&= ;1. fo [klek () fue ™ ¥ emPe ™ gy (19)
From Eq. (15)
1+ [ (x) =¢ “‘e}‘fo o (20)

k=1
! 8
7§ = I' V.
+f,_0)\e “e*fo Y

By the substitution of Eq. (20) into (19) and by integrating,
it can be shown that

L (-p.)

B= 5

hence
= 1
P.

Note that G = 147 is the average bulk size, consequently
Eq. (21) checks with the results of theorem 1.

1+z 1)

0

II1.3 Distribution of Interarrival and Interdeparture Times
of Star Customers

We now proceed with the derivation of the p.d.f. of the
interarrival time to the network and interdeparture time from
the network of the star customers in steady state.

Theorem 3: The sequence of interarrival times of star custo-
mers to the network and of interdeparture times of star cus-
tomers from the network converge in steady state to identi-
cally distributed random variables, whose p.d.f. is

-p
Eule e .__ﬁ__[xe—)\l_ e h) =1
SRR Ta e s £
() = (22)
=1
pe H {1+ ; & —=(ut=1)) p=1
and whose variance is
1 1 2 ePp(l+p)
=l )+ = #1
g e P2 3 1P .
o, = (23)
1 e 1 6
— ol ) — L =i
T 1—e™! (1-e71)2 u? s
Proof:  First we prove that Eq. (22) holds true for the

interarrival times of star customers in the network.
a) Interarrival Times

Similar to the proof of Theorem 2, the p.d.f. of the interar-
rival times of star customers is a direct consequence of
Lemma 1 and Theorem 1. We must however notice that
since the TC of Lemma 1 (Fig. 4) is now a star customer
then the first out-of-sequence customer thereafter is also a
star customer.

From the above considerations and Eqs. (5) and (12)
WO = [ 0, ) dx (24)

£q. (24) and the results of Lemma 1 and Theorem 1 yield
Egs. (22) and (23). The algebra is omitted here.

We can easily check that [ h(Ndi=1. Also let 7 be the
average time between arrival of star customers; then

i=f m@a
After some algebra, we find
e o
AP.

Recall that AP. = ) is the rate of arrival of star customers,
hence the equation above gives the expected result.

A



b) Interdeparture times

Let 6 be the interdeparture time between the two star custo-

mers of Fig. 4 (TC and OSC are star customers), and /(9)
the p.d.f. of 6. If we condition on the service time of the TC

star customer then

10) = [ 71601, ax 25)
where
10 1x) = Plo<0<6+d0 | service time of TC star = x] (26)
In order to determine /(9 | x) we further need to condition
on the interarrival times ¢ between the two star customers,

TC and OSC. Let

L(0fx,t)=P[f<0!xx=x,1=t] @7
Let y denote the service time of the OSC, then
b= pta—x (28)
thus
L®]x,0) = Ply<o+x—1] (29)

a. t>x: then y is just the service of an arbi-

trary customer

b. t<x:
greater than x—¢

then y is further known as being

Consequently

Ply<6+x—t| y>x—1] t<x

L@]x,t) = (30)

Ply<o+x—1] 12x

Where y is the service time of an arbitrary customer (i.e., it

is exponentially distributed). Furthermore 6+x—¢ must be
positive for L (8| x,7) to exist; thus for >0

1—e~nb t<x
L@|x,0) = 1—enOr>-0 y <oty (31)
0 t>0+x

Let /(8| x,1) be the p.d.f. that corresponds to the probability
distribution function, L (| x,7), i.e.,

os 0
10]x,0) = agL(()lx,t)

Thus
e Ho t<x
10| x,8) = {uen@+rx—0 x< 1< 0+x (32)
0 1>0+x

is the p.d.f. of the time between departures knowing x and 7.
In [4] we find the p.d.f of ¢ knowing x, thus

0+x
101) = [~ 161,08 | x)d (33)
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The next step (omitted here) is to show that [4]
16 x) =

e 07 oot
pe M[1—empore* +1Le"" Ter V-] p=1
-p

—ux —ux 4
pe  (1—e PePe™ ) o= ope™ g) p=1 S

Using Egs. (25) and (34)
1(D=h(1) (Eq. (22)).

it can then be shown that
]

So far we have proven that, given an arbitrary tagged custo-
mer which is a star customer, the interarrival time and inter-
departure time of the next arbitrary customer who is a star
customer are identically distributed and their common p.d.f.
is given by Eq. (22). In order for the sequence of interarrival
times and interdeparture times of star customers to be identi-
cally distributed it is enough to prove that the network ser-
vice time distribution of that next star (OSC) is identical to
that of the original star customer. This comes about from
the following considerations: From Lemma 1 we know that
h(t]x) depends only on the given service time of the
tagged customer. If that customer is a star customer then
the unconditioning must be done according to Eq. (17).
Consequently if we prove that the p.d.f. of the service time
of the next star in sequence is identical to J5(x) then the
application of Eq. (17) yields the same distribution 4 (7). A
similar demonstration is obviously true for the p.d.f. of the
interdeparture time between the next star and the one fol-
lowing him. The proof that the pd.f. of the network service
time of the next star is identical to that of the original star is
omitted here (see [4]).

Lastly we note that the interdeparture time 6 and x are

dependent random variables because of Eq. ?32) an?is also
that g the ISB size and x are dependent random variables

Lo S
because of Eq. (13). Consequently 9 and g are dependent

random variables. This is a major problem in the analysis of
the database station queueing system since it cannot be
modelled as an M/G/1 with bulk arrivals.

II1.4 Distribution of the Waiting Time of a Non-Star Cus-
tomer

Theorem 4:

The probability distribution function of the waiting time in
the virtual box of a non-star customer is given by:

F(w) = P[w<w | customer is not a star]

_ (d—ePe™)erw_14o—p
p—l+e7P

w20 (35)

Proof:  For the sake of brevity the proof is omitted here but
can be found in [4].

It is interesting to check that F(0) = 0 and F (00) = 1. The
first equality is obvious from Eq. (35). Whereas to prove the
second equality we notice that: e—** becomes very small
when w becomes large. Consequently let us expand the
numerator of Eq. (35),



2
et [1—1+pem¥ — %e"z’“’ +o(e#¥)]—1+eP =

2
p— %—e”'“" ~14+eP+o(e™™)

If we take the limit when w—e° we obtain p — 1+ ™ which
is exactly the same as the denominator.

I11.5 Distribution of the Number of Star Customers in the
Network

Theorem S: Let P, = Plk star customers in service | n
customers in servicef and and

G,z2) =% P, 2*
X

Then
1 |z rn -
G,(z) = e B (36)
and the average number of star customers given »n is
K, - 1+%+ bl a7

n

Proof: Obviously P,o=0 and P, =0 if k>n. Also if
n=1, then Py ;=1. Let us consider the case where 722, let
C,, be the customer with the highest number among the # in
service and let (ny,ny, - - - ,n,_;) be the numbers of the
(n—1) left in increasing order. For C,, to be a star customer
he must be such that his service time is greater than that of
Gy 5Cy - Thus the number of stars among
(ny, - - ,n,_y) is independent of C, . Two cases are possible
in order to obtain k star customers

1) C, is a star with probability 1 and there are

“Hy

k—1 star customers among (ny, * =+ ,n,_1).

2) C, is not a star and there are k star customers
among (ny, - - - ,n,-1).
Thus
It n—1 5 ,
Paj = Pr-ta-1+ Polix - 22 k=n 38)

k

If we multiply by z*¥ and sum over k from 1 to infinity we

find

G,(z) = QZ—i G, (2) n>2 (39)

note that G(z) = z. The last two equations above yield Eq.
(36).

Let k, be the average number of customers, then
E= szn,k=G/n(1)
k=1

Taking the derivative with respect to z in Eq. (36), we arrive
at

Gl e ln+(;',,_l(1)

nz=2

also
G (1) =1

The above equations yield Eq. (37) which is a harmonic
?eri)es. This result can also be obtained directly from Eq.
38).

Similar results to Theorem 5 have also been found in the
study of time complexity of SITU permutation algorithms by
Knuth [5]° where the equivalent of Knuth’s LOO (left out
of order) number is the star customer here.

I11.6 Limiting Behavior

Two important cases will be studied: p—0 and p—+oo.
Corollary 1:

At the limit, when p—0 the following properties are true:

P.—1 (a)
I () —=prets (b)
&0 k2l
(¢) (40)
gl
h(t)—re M (d)
F(w)—1—e¢#* (e)

Proof:

Egs. (40a), (40b), and (40d) are obvious. Eq. (40c) is also
obvious since
1

— 1
P.

Ekgk =§=
k=1

Thus

lim g =0 which yields

limg, =0 k21
p—0 p=l

Eq. (40c) can also be proved directly from Eq. (16) (see [4]).
In order to prove Eq. (40e) let us expand the numerator and
denominator in Eq. (35) around p

2 2

(I=14+pe ¥ — Lo %) e —1+]1—p+L 10 (p?)
2 2

F(w) =

2
p—1+1—p+f’2—+o ()

—Lze_"w+%2+o (p?

F(w) = 3
%—+o (p2)

Taking the limit when p—0 gives Eq. (40e).

* We are grateful to Dr. Mickey Krieger who pointed out
this work by Knuth.



Let us note that the results of Eq. (40) show that at the limit
when p—0 very little disorder occurs in the system. In fact
at the limit all customers are star customers. Moreover, if an
inversion of order occurs at the limit, it will be between
exactly two customers. Thus the higher number will depart
first and the second will spend his remaining time in the net-
work and then will depart as a star customer. That remaining
time is the eligibility waiting time for the non-star customer,
and it is exponentially distributed. This explains Eq. (40e).

Corollary 2

At the limit when p—oo the following properties are true:

P.—0 (a)
G—oo (b) (41)
h()—pe H (c)

The proof of the above is obvious. Furthermore let us note
that

x belongs to [0,00)
(x finite

lim f; (x) = 0
p—'w
which indicates that the p.d.f. becomes an impulse at infinity.

Also

limF(w) =0 we€ [0,00)

p—roo

thewhich also indicates that the p.d.f. of the waiting time of
non-star customers is an impulse at infinity. Therefore the
waiting time at the virtual waiting box becomes infinite. This
checks with the previous result whereby the network service
time of a star customer becomes infinite when p—oo. Furth-
ermore we note that the departure process of star customers
is a Poisson Process with a rate equal to the network service
rate u. This is a quite surprising result. Star customers
spend on the average an infinite time in the network but
depart at a rate u.

IV. Numerical Examples

In this section we show some numerical examples
illustrating the analytic results developed in the preceding
sections.

Figure 5 shows the variation of P., the probability
that an arbitrary customer is a star customer, versus the net-
work traffic intensity p =\/u. We notice that P drops rela-
tively rapidly in the region centered at p=1. This is intuitive
since a customer is not a star if it arrives while at least one
other customer is in the network and departs earlier than one
of these customers. Since p is the mean number of custo-
mers seen in the network at an arrival instant, for p<1 there
is small probability of any customers in the network at an
arrival instant (and an even smaller probability that the arriv-
ing customer will depart earlier than a customer found in the
network). For p>>1, P. is approximately 1/(p+1) which is
intuitive because an arriving customer sees an average of p
customers in the network and each is equally likely to be the
last to depart.

Figure 6 shows the probability density function of the net-
work service time of a star customer as a function of p with
w=2. Figure 7 shows the eligibility waiting time of a non-
star customer as a function of p. For p=0 these density
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Fig. 5. Probability of a star customer.

functions are exponential. For high p they are unimodal
density functions which are of approximately constant shape
but the mode (and mean) is shifting toward infinity.

It was noted in the sections describing the limiting behavior
of the infinite server that at both extremes (p—0 and p—oo)
the departure process of star customers from the network is
Poisson. In Figure 8 the coefficient of variation of the inter-
departure times of star customers is plotted versus p. At
both low and high values of p the coefficient of variation is
close to 1 and around p=1 there is a noticeable dip. Interest
in this departure process comes from a desire to approximate
the database manager queue as an M/G/1 queue with bulk
arrivals. While the evidence so far indicates that the Poisson
arrival assumption is reasonable, there is still the problem
that bulk size interarrival times are correlated. Dealing with
this problem is a topic for further research.

Figure 9 shows the variation of the mean network service
time of a star customer and the mean eligibility waiting time
of a non-star customer as a function of p. We note that
these means are relatively constant until the region p=1, at
which point they increase markedly. No simple relationship
between these two values has been found although it is sug-
gested by the data the such a relationship may well exist.

Conclusion

In this paper we have presented some basic results relating to
the disorder introduced when ordered arrivals are subjected
to delays in an M/M/o server. The motivation for examin-
ing this behavior is ultimately to be able to develop models
for distributed database systems which would include the
effect of concurrency control algorithms. This goal is not
met in this paper but rather we have presented some initial
results which are of some interest in themselves and which
will be useful in further development of a total system
model.
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Fig. 8. Coefficient of variation of the interdeparture times
of star customers from the network.
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Fig. 7. Probability density function of the eligibility

waiting time of a non-star customer.
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