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Abstract

The ARPANET experience has produced occasional
network deadlocks and other (less catastrophic)
forms of network degradation. These problems
have been traced to logical faults in the network
flow control procedure. In this paper we discuss
the general aims and problems of flow control,
describe aspects of the ARPANET approach, and
then outline some of the deadlocks and degrada-
tions which have been discovered. No satisfac-
tory solution to the general problem of discover-
ing hidden deadlocks is available yet.

I. Introduction

Whenever two information processing systems
exchange data, carcfully designed control pro-
cedurcs are necessary to insure safe and correct
transfer of the information. The main purpose
of these control proccdures is:

1. prevention of loss of data (for example,
the receiving system must signal its
readiness to accept the data)

2. duplicate detection (cach transferred
jinformation item should be read only
once by the receiving system)

3. error detection and correction

4. efficient use of physical resources

5. deadlock prevention
There are other issues involved in the data trans-
fer such as recovery from failures, security, and
accounting that ave not dealt with in this paper.

1f the two systems are in close physical
proximity a carefully designed handshake proce-
dure usually provides most of the control that is
necessary for the correct transfer of data. If
two (or more) systems are connected over tele-
phone lines, special control messages are usually
exchanged between the systems to control the flow
of data. The most complex case arises when a
communications network is used to inter-connect
a variety of different information processing
systems such as computer terminals, remote job
entry stations, sensors, speech processors, etc.
(see Figure 1). In this case, there are several
jevels of data transfer which need to be con-
trolled. In particular, the flow of data has to
be controlled between:

a) any pair of communications processors

b) a communications processor and the

.
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Figure 1. Computer—Communication Network Structure.

.

attached information processing systems
¢) any pair of information processing sys-
- tems
d) any pair of communicating processes if
the information processing systems are
multiprogramming or time-sharing computer
systems
In this paper we will mostly deal with a) and b),
that is, the control procedures within and at the
boundary of the communications network. We will
focus our attention on packet-switched networks and
discuss the impact of flow control procedures on the
performance of these networks. To demonstrate the
difficulty of designing "correct' control proce-
dures we will report on the experience with the
operation of the ARPANET [1,2,3,4]. Several design
oversights in the ARPANET are discussed which
caused or could have caused serious performance
degradations or even a complete lockup. These con-
ditions have since been identified and corrected.

II. Performance Criteria

Before we go into a discussion of various
control procedures, we will first describe the
performance criteria that are used to evaluate
packet-switched computer communi cation networks.
In this context, we are interested in performance



measures which describe the ability of the com-
munications network to accommodate different
types of traffic. (This excludes performance
measures like reliability, availability, flexi-
bility, etc.). If the communications network
were to carry only one type of traffic, one per-
formance measure would probably be enough to
describe the performance of the system. For
example, if the main purpose of the communica-
tions network were to provide high throughput
paths, the maximum throughput between any pair of
nodes under various conditions would be a proper
measure of its performance. However, most com-
munication networks are designed to accommodate
several kinds of traffic. Therefore several per-
formance measures are essential to understand the
performance characteristics of such a network.

We will distinguish the following three
types of traffic:

1. High Throughput Traffic (HT-traffic)

2. Low Delay Traffic (LD-traffic)

3. Real Time Traffic (RT-traffic)

HT-traffic is required for the transmission
of large files of data. In this case the total
time between the initiation and the completion of
a file transfer needs to be minimized. The delay
of individual packets between source and desti-
nation node, however, is less important. There-
fore HT-packets should not necessarily be sent
over the path of minimum expected delay but over
the path of maximum excess capacity. Extensive
buffering is usually used to increase the line
utilization and therefore the throughput. Remote
job entry represents a typical application which
requires HT-traffic.

LD-traffic is typically encountered during
the interactive use of computers. Here the
delay for individual messages between the source
and destination node needs to be minimized. LD-
traffic can be characterized by a large peak to
average line utilization ratio ("bursty" traffic).
In contrast to HT-traffic, queueing delays due to
buffering of messages are undesirable. The remote
use of time-sharing systems represents a typical
application which requires LD-traffic.

RT-traffic has characteristics of both, HT-
traffic and LD-traffic. The transmission of
digitized speech represents the best example for
a data transmission which requires RT-traffic.

In this case it is important that the delay for a
large percentage of messages be less than some
tolerable threshold value. Also, the network
should be able to maintain a constant level of
throughput. A characteristic property of RT-
traffic is the redundant encoding of the infor-
mation it carries. Therefore the control proce-
dures need not be as much concerned about the
prevention or loss of data as is the case with
HT-traffic or LD-traffic.

If the purpose of the network is to carry
only one type of traffic, it is relatively easy
to design efficient control procedures. It is
much more difficult to design control procedures
which satisfy the requirements of two types of
traffic simultaneously. If all three types of
traffic need to be accommodated in the network,
one usually has to compromise. The kind of
compromise can be described graphically by the

performance triangle of Figure 2 which was first

RT-TRAFFIC
(SPEECH TRANSMISSION)

HT-TRAFFIC
(REMOTE JOB ENTRY)

LD-TRAFFIC
(INTERACTIVE COMPUTATION)

Figure 2. Performance Triangle.

suggested to the authors by Danny Cohen of USC-
I1SI. Each point inside the triangle represents
a possible compromise. A design which optimizes
the network for one type of traffic will often
be suboptimal for the other two types of traffic.

If the purpose of the communications network
is to carry LD-traffic as well as HT-traffic, a
well-known technique to accommodate both types of
traffic is to use different priority levels. The
LD-packets are given a higher priority such that
HT-packets are only served when the LD-packet
queuc is empty. If RT-packets are also to be
transmitted we have a more difficult situation.
Because of the nature of the traffic, it is not
clear whether RT-packets should have a higher or
a lower priority than LD-packets. In this case,
priorities which increase as a function of the
incurred delay appear to provide a more satis-
factory solution. For example, the RT-packets
could start out with a lower priority than the
LD-packets. However, the priority of those RT-
packets which incur extremely large delays could
be increased in such a way that these packets
still reach their destination within the specified
time interval [5].

All these considerations apply to the manage-
ment of output quecues, i.e., only packets which
have already been accepted by a node are involved
in the decision. However, there is an equally
important decision to be made concerning the
admission of packets to a node. Networks cannot
afford to accept all the traffic that is offered
without some control. This would inevitably lead
to heavy congestion and possibly lockup of the
entire network. There must be rules which govern
the acceptance of traffic from the outside. These
rules are commonly known as flow control proce-
dures. The next section will introduce different
kinds of flow control procedures and discuss
their influence on the different types of traffic.

III. Flow Control Procedures

There are two types of flow control: local
flow control and global flow control. Local flow
control is an important characteristic of any
packet-switched network. It is a direct conse-
quence of the limited buffer space in each node.
Whenever this buffer space is used up, a node has
to stop further input from outside the net and
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from its neighbors. To avoid congestion, the
input is usually stopped even before all the
buffers are occupied. For example, there is only
a limited number of packets allowed on each out-
put queue. Packets which would have to join a
full output queue are rejected. There may also
be a limit on the total number of ''store-and-
forward' buffers such that only packets which
leave the network at the node in question

("reassembly packets' 0 are accepted if all store-

and- forward buffers are occupied [2,6].

The existence of local flow control proce-
dures implies that packets may experience an
admission delay which will be non-zero in case
of (local) congestion. This admission delay is
experienced not only by packets which enter the
net from the outside but also by packets which
are transmitted from a neighboring node. It is
important to realize that this admission delay
contributes to the total delay in the same way
as the queueing delay in the output queues.
Therefore the decision as to what packets to
accept or reject should be based on a similar
priority structure as that described for the
management of output queues. For example, HT-
packets could already be rejected while LD-pack-
ets and RT-packets are still being accepted.
Also, for packets with the same priority, pre-
ference should be given to packets which are
transmitted from a ncighboring node over those
which try to enter the net from the outside.
This strategy helps effectively to prevent
further congestion [7].

Local flow control alone is not sufficient
to avoid congestion in a packet-switched network.
There also needs to be some limitation on the
total number of packets which can be handled by
the network simultanecously. Procedures which
achieve this limitation are called global flow
control procedures. If the global flow control
works properly, further input to the communica-
tions network is stopped well before all the
buffer space in the net is occupied. There are
two methods of global flow control which have
been investigated: end-to-end flow control (ARPA-

like[6]) and isarithmic flow control (NPL-like[8]).

In the current ARPANET there is a maximum
number of four messages which can be outstanding
between any pair of source-destination nodes (or
IMPs). This .scheme has two major advantages:

1. .It is easy to implement (Whenever four end-
to-end acknowledgment packets, called RFNMs, are
outstanding, further input from any of the
attached computers, called HOSTs, is stopped).
2. The input to the net is stopped rapidly when
a destination IMP or HOST goes down.

A disadvantage of the current scheme is that
the flows between distinct pairs of HOSTs which
are connected to the same source and destination
IMPs suffer from interference. Therefore a change
of the global flow control from an IMP-to-IMP to
a HOST-t0-HOST basis is currently being consider-
ed. There are other areas of possible improve-
ment of the end-to-end global flow control pro-
cedure which are worth investigating. For
example, the limit of four outstanding messages
appears to be rather arbitrary. Ideally, this
number should change dynamically as a function of
the total network load. It should also be consid-
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ered to limit the number of outstanding packets,
not messages since most of the network resources
are allocated to packets, and not messages. .This
nunber of outstanding packets may then depend on
the minimum number of hops between source and
destination IMP. This is in contrast to the
current scheme which is distance-independent.

Isarithmic flow control is based on the idea
of a fixed number of "containers'". A packet must
be placed in an empty container before being
transmitted. When the packet arrives at its
destination node, it is removed from the container
which then becomes available for the transmission
of another packet. The empty container may be
stored at the node where it became empty or be
sent to a neighboring node. In the isarithmic
flow control scheme, the admission delay is the
time a packet waits for an empty container to
become available.

It is important to realize that with this
flow control method the management of the empty
containers has a direct influence on the perform-
ance of the network. For example, if the network
is to be optimized for LD-traffic, it is desir-
able to restrict the movement of the empty con-
tainers in such a way that there are always a few
empty containers waiting at each node. This
guarantees a zero admission delay. If the net-
work is, on the other hand, to be optimized for
HT-traffic, a node should have the ability to
acquire empty containers from its neighbors.
However, if a large percentage of the containers
is used by a few nodes to achieve high throughput,
other nodes will be out of empty containers. This
will introduce considerable admission delays at
these nodes. This example shows clearly that
HT-traffic and LD-traffic are conflicting goals

"in this environment.

A possibility to reconcile the conflicting
interests is to provide for diffecrent types of
containers. Some containers may, for instance,
only be allowed to transport LD-packets. These
are then managed separately to suboptimize the
LD-traffic. Another type of container may be
allowed to transport HT-packets and LD-packets.
These containers can be used to achieve a high
throughput. Similar observations can be made if
HT-traffic, LD-traffic, and RT-traffic must be
accommodated in the same network.

1V. Lockups and Throughput Degradation in the
ARPANET

4.1 Previous Lockup Problems

Lockup or deadlock conditions are onc of the
most serious system malfunctions that can occur
in a computer system or network. Communication
protocols have to be designed very carefully to
avoid the occurrence of these lockups. Their
common characteristic is that they occur only
under unusual circumstances which were not fore-
seen or deemed too unlikely to occur by the proto-
col designers. (However, these designers often
are not the ones in a position to evaluate such
likelihoods quantitatively.)

In the ARPANET, HOSTs communicate with each
other via a sequence of messages. An IMP takes
in a message from its HOST, forms it into packets,



and ships the packets separately into the network.
A message consists of up to eight packets whose
maximum size is approximately 1000 bits. The
destination IMP reassembles the packets and
delivers them in sequence to the receiving HOST.
This reassembly of packets in conjunction with the
early form of flow control caused the best known
lockup that has occurred in the ARPANET. The
repeated observation of this "reassembly ockup"
led to a major redesign of the ARPANET fli.w
control mechanism.

Reassenbly lockup could occur in the subnet
when reassembly space was unavailable to store
incoming multipacket messages. Let us assume
that all the reassembly buffers at some IMP A are
either occupied or reserved for awaited packets of
partially reassembled messages. Reassembly lockup
occurred when all the neighbors of IMP A were
filled with packets also headed to A which IMP A
could not accept, thereby preventing packets at
other IMPs from reaching the destination A and
completing the partially reassembled messages [9].

Direct store-and-forward lockup is another
example of a lockup which can occur in a packet-
switched network if no proper precautions are
taken [9]. let us assume that all store-and-
forward buffers in some IMP A are filled with
packets headed to the neighboring IMP B and that
all store-and-forward buffers in IMP B are filled
with packets headed to IMP A. Since there is no
store-and-forward buffer space available in either
IMP, no packet can be successfully transmitted
between these two IMPs and a deadlock situation
results. There is, of course, an easy way to
remedy this situation. One has to make sure that
not all of the store-and-forward buffers can
reside on a single output queue. In the ARPANET,
only 8 of the 20 store-and- forward buffers can be
placed on a single output qucue.

Indirect store-and-forward lockup can occur
when all the store-and-forward buffers in a loop
of IMPs become filled with packets which all trav-
el in the same direction (clockwise or counter-
clockwise) [9]. Although such a highly structured
traffic pattermn is very unlikely to occur it can
be shown that, for the lockup to establish itself,
this undesirable packet flow need only persist for
about 1 sec. It appears to be difficult to find
an efficient procedure which prevents indirect
store-and-forward lockup from occurring. In this
case it may be more efficient to provide for the
recovery from the lockup than for its prevention.
For this purpose a priority structure on the
admission of packets as described in Section 3 is
very helpful since, for example, it may allow the
exchange of control and LD-packets while HT-pack-
ets are already locked up.

The last lockup in the ARPANET which caused
a revision of the flow control procedure happened
at the end of 1973 ("Christmas lockup'). This
dormant lockup condition was brought to light by
collecting snapshot measurement messages at UCLA
from all sites simultaneously. The Christmas
lockup happened when snapshot messages arrived at
the UCLA IMP which had allocated reassembly
storage for them and no reassembly blocks were
free. (A reassembly block is a piece of storage
used in the actual process of reassembling packets

back into messages.) To avoid this kind of lock-
up reassembly blocks are now allocated along with
the reassembly buffers for each multiple-packet
message [10].

Aside from these flow control lockups, a num-
ber of hardware failures have produced severe
lockup conditions. This has led to the extensive
use of software checksums to protect data packets
and sensitive pieces of code [11].

4.2 Piggyback Lockup

As long as it is mot possible to design prac-
tical communication protocols which guarantee
deadlock-free operation it is vital to continually
check those protocols that are currently in use
for any such failures - even if they appear "very
unlikely" to occur. In this section we comment
on a possible deadlock condition in the IMP subnet
which, to our knowledge, has not yet occurred,
neither had it previously been identified. Though
we have never seen this problem actually happen it
may occur in the future if no precautions are
taken. This possible lockup condition is due to
the sequencing of messages in the subnet.

As mentioned before, the flow control mecha-
nism in the ARPANET was modified in some signifi-
cant ways to avoid the occurrcnce of reassembly
lockup [6]. Specifically, no multi-packet message
is allowed to enter the network until storage for
the message has been allocated at the destination
IMP. As soon as the source IMP takes in the first
packet of a multi-packet message, it sends a small
control message to the destination IMP requesting
that reassembly storage be reserved. It does not
take in further packets from the HOST until it
receives an allocation message in reply.

To maximize the effective bandwidth for
sequences of long messages, the end-to-end
acknowledgment message (''RENM' for request-for-
next-message) may carry a storage allocation (the
piggybacked ALLOCATE). 1f the source HOST delays
too long, or if the data transfer is complete, the
source IMP retumns the unused allocation to the
destination IMP.

To guarantee that messages leave the desti-
nation IMP in the same order as they entered the
source IMP, each message carries a sequence num-
ber. This sequencing of messages has the poten-
tial of introducing deadlock conditions. The
reason for this is that any message, say MSG(n+1),
which is out of order (and therefore cannot be
delivered to its destination HOST) may use up
resources that are required by MSG(n) which must
be delivered next. Therefore, MSG(n) may not be
able to reach its destination IMP which, in tumn,
prevents the other messages (n+1, etc.) that are
out of order from being delivered to their desti-
nation HOST(s). For this reason one has to be
very careful not to allocate too many resources
(e.g. buffers) to messages that are out of order.

To avoid lockup conditions the current flow
control procedure in the ARPANET takes the two
following precautions:

1. Requests for buffer allocation are always
serviced in order of message number; i.e.
no '"ALLOCATE' is returned for MSG(n+1)
if MSG(n) (or a request for buffer
allocation for MSG(n)) has not yet been
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received and serviced.

2. Single packet messages (regular and
priority) that arrive at the destination
IMP out of order are not accepted unless
they were retransmitted in response to
a previous buffer allocation. These
messages are treated rather as a request
for the allocation of one buffer (accord-
ing to 1 above) and the message text is
discarded.

With these two precautions the occurrence of
deadlock conditions appears to be impossible.
However, there is a second buffer allocation mech-
anism that is not tied to the message sequencing,
namely, the ALLOCATE that is piggybacked on the
RENM for a multiple-packet message. The piggy-
backed ALLOCATE represents a buffer allocation for
the next multiple-packet message, and not for the
next message in sequence. Thus, if the next
message in sequence is a single-packet message,
the piggybacked ALLOCATE in effect allocates
buffers to a message that is out of order.

Let us see how this situation can lead to a
deadlock condition. Assume there is a maximum
number of 24 reassembly buffers in each IMP. Let
IMPs A, B, and C continually transmit 8-packet
messages to the same destination IMP D such that
all 24 rcassembly buffers in IMP D are used up by
this transmission of multiple-packet messages.

If now, in the stream of 8-packet messages, IMP A
sends a single-packet message it will generally
not be accepted by destination IMP D since there
is no reassembly buffer space available. (There
may be a free reassembly buffer if the single-
packet message just happens to arrive during the
time one of the three 8-packet messages is being
transmitted to its HOST). The single-packet
message will therefore be treated as a request for
buffer allocation. This request will not be ser-
viced before the RFNM of the previous multiple-
packet message has been sent. At this time, how-
ever, all the free reassembly buffers have already
been allocated to the next multiple-packet message
via the piggybacked ALLOCATE mechanism. The only
chance for the single-packet message to get its
allocation request satisfied is to grab a reassem-
bly buffer from one of the other two 8-packet
messages. This attempt may be unsuccess ful
because it depends on the timing of events in the
IMP. A deadlock condition can occur if IMP B and
IMP C also send a single-packet message in their
strecam of 8-packet messages which cannot be ser-
viced for the same reason. In this case, the
three 8-packct messages that will arrive later at

IMP D cannot be delivered to their destination
HOST(s) because they are out of order. The three
single-packet messages that should be delivered
next, however, will never reach the destination
IMP since there is no reassembly space available.
Table 1 shows a possible sequence of events that
leads to this deadlock condition. Note that an
ALLOCATE for one of the single-packet messages Al,
Bl, and Cl can only be returned to source IMP A,
B, and C, respectively, after the RFNM (with its
piggybacked ALLOCATE) for the previous 8-packet
message has been sent. If these RFNMs are sent
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Table 1 Example for the Piggyback Lockup

# of # of # of
allocated Treassembly free re-
reassembly buffers in assembly

buffers use buffers

Initially 24 0 0

1. A8 arrives 16 8 0

2. B8 arrives 8 16 0

3. C8 arrives 0 24 0

4. Al arrives 0 24 0

S. Bl arrives 0 24 0

6. Cl arrives 0 24 0

7. A8 complete 0 16 8

8. B8 complete 0 8 16

9. C8 complete 0 0 24

10. A8 RFNM/ALL 8 0 16
11. B8 RFNM/ALL 16 0 8
12. C8 RFNM/ALL 24 0 0
13. A8 arrives 16 8 0
14. B8 arrives 8 16 0
15. C8 arrives 0 24 0

16. - deadlock -

Explanation of notation:

all 8 packets of
the 8-packet mes-
sage from IMP A
have arrived at
IMP D

event: A8 arrives

event: Cl arrives a single packet
message from IMP C
has arrived at IMP
D (and is treated
as a request for

buffer allocation)

the last packet of
the 8-packet mes-
sage from IMP B has

been received by
its destination
HOST

event: B8 complete

a RFNM with the
piggybacked ALLOCATE
is sent to IMP A

event: A8 RFNM/ALL

in sequence, i.e. without an ALLOCATE for one of
the single-packet messages in between, the tempo-
rarily freed reassembly storage (events (7)
through (9)) is implicitly allocated to the next
multiple-packet messages (events (10) through
(12)) and not to any of the single-packet messages.
The next 8-packet messages are, however, out of
order and cannot be delivered to their destina-
tion HOST(s).

It appears as though such a lockup can only
occur if the number of reassembly buffers is a
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multiple of eight. Indeed, the probability of a
lockup in this latter case is much higher. How-
ever, deadlocks can also occur if the number of
reassembly buffers is not a multiple of eight.
Let us assume there are 26 instead of 24 reassem-
bly buffers. Assume also that, due to alternate
paths or line failure, the second packet of a
2-packet message arrives at IMP D before a single-
packet message from the same source IMP A. The
single-packet message has a smaller sequence
number and must therefore be delivered to its
destination HOST before the 2-packet message.
When the second packet of the 2-packet message
arrives at IMP D the IMP realizes that only 2 of
the allocated 8 buffers will be needed. There-
fore 6 buffers are returned to the pool of free
reassembly buffers. If there were 26-3x8=2
buffers in the pool before, the pool size is in-
creased by 6 to 8 buffers. These 8 buffers,
however, are just enough to send out another
piggybacked ALLOCATE. The single-packet message
may thercfore find the pool of free reassembly
buffers empty although the total number of re-
assembly buffers is not a multiple of eight. The
2-packet message cannot be delivered to its des-
tination HOST because it is out of order. There-
fore the dcadlock condition we described before
may occur again.

We agree that the above mentioned sequence
of events is unlikely to occur (otherwise one
would have observed it already). This is partic-
ularly true since the current maximum number of
reassembly buffers (42) is much larger than 24.
Judging from past experience with computer sys-
tems and networks, however, we know that even
very unlikely events have a tendency to occur in
the long run. Also, the probability of this
dcadlock condition increases with increasing
traffic in the net. Therefore, it is certainly
worthwhile to modify the flow control in such a
way that this deadlock cannot occur. It turns out
that a minor modification alrcady achieves the
desired effect. Recall that the described dead-
lock can only occur because single- and multiple-
packet messages use the same pool of reassembly
buffers. If we set aside a single reassembly
buffer (or one for each destination HOST) that
can be used only by single-packet messages this
lockup condition due to message sequencing can-
not occur.

- 4.3 Throughput Degradation

As pointed out before, the throughput and
delay requirements for RT-traffic are quite
different from the throughput and delay require-
ments for interactive use or file transfers. For
the transmission of digitized speech, for in-
stance, it is necessary to achieve a relatively
high throughput for small messages since long
messages result in long source delays to fill the
large buffers. We realize that up to now little
attempt was made to optimize the transmission
of RT-traffic in the ARPANET. It was neverthe-
less surprising for us to find out that the
observed throughput for single-packet messages
is in many cases only about one fourth of what
one would expect. In what follows we are going
to eéxplain why this happens and what could be

done to correct this situation.

As mentioned before, single-packet messages
are not accepted by the destination IMP if they
arrive out of order. They are rather treated as
a request for the allocation of one reassembly
buffer. The corresponding ALLOCATE is then sent
back to the source IMP only after the RFNM for
the previous message has been processed. We
therefore may have the following sequence of
events:

1. MSG(i) sent from SOURCE-IMP (message i
is sent from the source IMP to the
destination IMP).

2. MSG(i+1) sent from SOURCE-IMP.

3. MSG(i+1) arrives at DEST-IMP (due to an
alternate path or a line error, MSG(i+1)
arrives at the destination IMP out of
order; it is treated as a request for
one reassembly buffer allocation and
then discarded).

4., MSG(i) arrives at DEST-IMP (MSG(i)
arrives at the destination IMP; it is
put on the proper HOST output queue).

5. RFNM(i) sent from DEST-IMP (after MSG(i)
has been accepted by the destination HOST
the RFNM is sent to the source IMP).

6. ALL(i+1) sent from DEST-IMP (only after
the RFNM for MSG(i) has been processed
can the ALLOCATE for MSG(i+1)be sent).

7. RFNM(i) arrives at SOURCE-IMP.

8. ALL(i+l) arrives at SOURCE-IMP.

9. MSG(i+1) is retransmitted from SOURCE-
IMP.

10. "MSG(i+1) arrives at DEST-IMP (now MSG(i+l)
is put on the proper HOST output queue).

11. RFNM(i+1) sent from DEST-IMP.

12. RFNM(i+1) arrives at SOURCE-IMP.

Figure 3 describes this sequence of events
graphically. Note that the round-trip time for
MSG(i+1) is the time interval between event 2 and
event 12, The round-trip time for MSG(i+1)is more
than twice as large as it would have been if it
had arrived in order, other conditions being
unchanged. Therefore a line error will in many
cases not only delay the message in error but
also the next single-packet message if this
message follows the preceding message within
125 msec, the error retransmission timeout inter-
val. Also, a faster, alternate path to the
destination IMP can actually slow down the trans-
mission since it causes messages to arrive there
out of order.

This situation becomes even worse when we
consider RFNM-driven single-packet message

SOURCE ~IMP

RFENM(i+ 1)

MSGli+ 1)
DEST—IMP (RETRANS)

Y41t N
3 456 nn

ROUND-TRIP
MSGhL)

[P PR ———— Y

- onfan e f o - - oSdn

ROUND-TRIP
I 2 MSG(i+ 1)
]

- Figure 3. Retransmission Délay for MSGIi + 1).
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traffic. Table 2 shows a possible sequence of
events. We again assume that MSG(i+1) reaches
the destination IMP before MSG(i). Since the
traffic is RFNM-driven, the arrival of RRNM(1),
RENM(i+#1),.... is followed by the sending of
MSG(i+4) ,MSG(i+5) .-+

The most interesting fact about this sequence
of events is that the arrival of MSG(i+1) before
MSG(i) at the destination IMP causes not only
MSG(i+1) but all future messages to be retrans-
mitted--though we do not assume that any of the
future messages arrive out of order. The table
also shows that the round-trip time for MSG(i+4)
and all future messages is more than four times
as large as it would be without these undesirable
retransmissions. It is also noteworthy that,
once this retransmission pattern has established
jtself, therc is almost no way the system can
recover from this condition other than interrupt-
ing the input stream at the source IMP. A single
arrival out of order of any of the later user OT
control messages, for instance, will not change
this retransmission pattern. The normal flow
of single-packet messages will reestablish itself
if, for example, MSG(i+d), MSG(i+5), and MSG(i+6)
are simultancously delayed for several hundred
milliseconds such that MSG(i+1), MSG(i+2), and
MSG(i+3) can be retransmitted in the meantime. The
probability of occurrence of such an event 1s°,
however, extremely small. Therefore one can
consider the system as being trapped in this
undesirable retransmission condition. The
vpormal' flow of messages, on the other hand,
represents only the transient behavior of the
system since there is always a finite probability
that two messages arrive out of order due to
transmission errors.

As mentioned before, the systcem can only
recover from this throughput (and delay) degra-
dation if the input stream of single-packet
messages 1is interrupted. In case of speech
transmission, however, this might not occur for
some time. Therefore speech transmission systems
would in many cases have to work with only one
fourth of the expected single-packet bandwidth.
Since this is clearly an unacceptable condition
we now describe a method that could be used to
avoid the undesirable retransmission of messages.

Recall that a single-packet message is
rejected at the destination IMP and later retrans-
mitted if the RFNM for the preceding message has
not yet been sent to the source IMP. This is
mainly done to prevent the occurrence of reassem-
bly lockup conditions. Therefore the problem
cannot be solved by simply accepting all single-
packet messages without additional measures to
prevent deadlocks. This could lead to a reassem-
bly lockup if a large number of single-packet
messages from several source IMPs arrives at their
common destination 1MP out of order. In this case
the destination IMP might not be able to accept:
those messages that are in order because of the
lack of reassembly buffers. As a result the

_system is deadlocked. Any solution of the
throughput degradation problem must guarantee
that all messages that arrive in order can be
accepted by the destination IMP.

Suppose all single-packet messages arc ini-
tially accepted (or stored). Let us take a
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Table 2 Retransmission Pattern for Single-packet
Messages

~

SOURCE IMP DESTINATION IMP
MSG(i) sent

MSG(i+1) sent
MSG(i+2) sent
MSG(i+3) sent

MSG(i+1) arr out of order
MSG(i) arr

RFNM(i) sent

ALL(i+1)- sent

MSG(i+2) arr out of order
MSG(i+3) arr out of order
RFNM(i) arr '
MSG(i+4) sent
ALL(i+1) arr
MSG(i+1) sent

MSG(i+4) arr out of order
MSG(i+1) arr

RFNM(i+1) sent

RENM(i+1) arr ALL(i+2) sent
MSG(i+5S) sent
ALL(i+2) arr
MSG(i+2) sent

MSG(i+5) arr out of order
MSG(i+2) arr

RFNM(i+2) sent

RFNM(i+2) arr ALL(i+3) sent
MSG(i+6)sent
ALL(i+3) arr
MSG(i+3) sent

MSG(i+6) arr out of order
MSG(i+3) arr

RFNM(i+3) sent

RFNM(i+3) arr ALL(i+4) sent
MSG(i+7) sent
ALL(i+4) arr
MSG(i+4) sent

MSG(i+7) arr out of order
MSG(i+4) arr
RFNM(i+4) sent

RFNM(i+4) arr ALL(i+5) sent

MSG(i+8) sent " :
A11(i+5) arr 5
MSG(i+5) sent * .

closer look at the situation where all single-
packet messages are accepted (or stored) such that
there is no reassembly buffer available for
messages that have to be delivered to their HOSTs
next. This is not really a lockup condition
because the source IMPs keep a copy of all single-
packet messages for which an RFNM has not yet
been received. Therefore any single-packet
message, which arrived out of order but was
accepted by the destination IMP nevertheless, can
be deleted later without the message being lost.
The destination IMP only has to send an ALLOCATE
for each deleted single-packet message to the
corresponding source IMP when reassembly buffer
space is available. This can also be considered
as a deferred rejection. But now a retrans-
mission is only necessary if the destination IMP
is really running out of reassembly buffers.. In
this case, the physical limitations of the system
are reached and we cannot hope to gain large
throughput increases by means of protocol changes.

V. Conclusions

In this paper we have shown that the design
of flow control procedures is fraught with hidden
dangers. Indeed, some of the most "obvious"
principles lead to catastrophic network failures.
For example, we have been able to show that both



packet reassembly and message sequencing are
likely sources of serious trouble even though both
spring from apparently sound reasoning. Once dis-
covered, these lockups and degradations are easily
removed.
undiscovered, lockups and degradations leaves one
in a most uncomfortable position.

A solution to this difficulty is to subject
the flow control procedure to a formal test of
its "correctness". Such a procedure is discussed
by Postel [12], but until the pure flow control
portion of network progress can be isolated in a
clean way (such as, for example, structured
programning) , the enormity of performing the test
is prohibitive. An alternative solution would
be to adopt an extremely simple approach to flow
control which could be proven safe (For example,
the UCLA Virtual Machine Monitor is designed
around a small isolated kernel whose security
can be verified due to its size [13]). Until
progress is made in those directions we can look
forward to the unpleasant surprises described in
this paper.
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