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In this paper, some fundamental properties are established which apply to the average T
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esponse time functions for

all time-shared computer systems. The first property is one of monotonicity. The second is a conservation law which

provides insight into the trade-offs available as one varies the response time func

gorithm.

The main thrust of the paper is t0 establish tight upper and lower bounds on the average resp
equilibrium results are good for Poisson arrivals, arbitrary service time distribution and arbitrary

tion by changing the scheduling al-

onse time. All these
(but work-conserving)

scheduling algorithms which can take advantage only of arrival time and attained service time. Examples of these pr0-
perties are given for a number of service-time distributions and scheduling algorithms.

1l INTRODUCTION notonicity property,a conservation law, and tight
upper and lower bounds on the system performance

We are in the midst of a veritable explosion regard- as measured by average response time.

ing the number of published papers which give analy- 1t is worthwhile mentioning that numerous papers

tical results for computer systems! This seems especial- have recently been published which address them-

ly true in the modeling and analysis of time-shared selves to bounds, inequalities and approximate solu-

computer systems D, tions to general queueing systems- Among these aré
It is fair to say that the recognition of probabil- Marshall [2, 3], Kingman [4], Iglehart (51, Daley

istic models as the appropriate method for studying and Moran [6] , and Gaver [7] to mention 2 few.

these systems was that which permitted the break-
through in analysis. In particular, the use of queueing

theory has been most profitable in this analytic work. 2. THE CLASS OF SYSTEMS
As a result of this flood of results, each applying to
a slightly different set of assumptions, it is natural Our objective is t0 create s
that we should seek some order in this embarrass- of the results available in the
ment of riches. For example, do there exist any in- computer systems. Let us cons
variants in behavior? Can we bound the possible range tems described below.
of performance, regardless of structure? What con- We adopt the well-kn
stitutes feasible performance profiles for these sys- model for time-shared
tems? These, and many more, aré reasonable inquiries In this model it is as
to make amidst the confusion of results. sing unit (CPU) is the on
In this paper we adopt the point of view that such Jobs arrive according to a
questions are important and must be answered. Our average arrival rate X jobs

focus is on a class of models for time-shared computer
systems. For these systems we are able to state a mo-
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1) gee, for example, the recent survey by McKinney [1].
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Fig. 1. General feedback queueing model.
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mand for service by the CPU in an amount equal to ¢
seconds, where these demands are chosen indepen-
dently from the service time distribution B(1).

B(r) = P[service time < ¢ seconds] 2.1
We define the usual moments of service time as2)

F=E(m] =/ mdB() - 2.2)
0

We further define the utilization fact0r3)
p=N . (2:3)

Upon arrival, a job enters the systems of queues
where he waits for a “turn” at service. When, finally,
his turn comes up, he is provided a quantum of service
equal to g seconds. If he requires less than (or equal
to0) ¢ seconds, he departs upon completion;if not, re-
turns to the system of queues having been partially
served, in which case we say that he has an attained
service of q seconds. Eventually, he will be permitted
a second quantum, etc., finally leaving when his total
attained service equals his required service time. We
assume that no overhead (in time) is incurred in trans-
ferring customers in and out of service (i.e., no loss
or swap-time); itis possible to account for swap-time
[9] in these models, but we do not pursue that matter
here.

The decision rule which chooses the next customer
to receive a quantum is referred to as the scheduling
algorithm. We assume that the scheduling algorithm
makes use only of X, B(?), ajob’s arrival time and a
job’s attained service.

In this paper, we consider a very useful special case
of the above model in which we permit the quantum
q to approach zero. This limit is known as the pro-
cessor-sharing model [10] for time-shared systems.

In this case, our model in fig. 1 becomes that of fig. 2
in which more than one customer (say n) may be
sharing the processor simultaneously; in such a case
each customer receives service at a rate of 1/n seconds
of service/second.

Response time is the interval measured from when
a customer arrives demanding service until he departs
fully serviced. For a customer requiring seconds of
service, the average response time is denoted.

2) where £ denotes the expectation operator.
3) The systems we consider are assumed to be in equilibrium,
which requires p < 1.
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Fig. 2. Feedback queueing model for processor sharing.

T(t) = average response time for customer re-
quiring 7 seconds of service 2.4)

This quantity is usually taken as the measure of per-
formance for time-shared systems for good reason. In
particular, it is usually desired that short jobs (small
t) be given preferential treatment over long jobs; this
discriminatory performance is easily seen through the
function T(¢).

A function closely related to the average response
time T(t), is the average wasted or waiting time W(?)
defined as

W) =T()—t . (2:5)

Furthermore, we consider a third related function,
W(r)/t which may be interpreted as the penalty rate
to jobs requiring ¢ seconds of service since it gives the
ratio of the cost in time (W(¢) which must be paid per
second of useful service time t).

It is convenient to introduce some additional nota-
tion at this point. Let us define

- [ raso e 1o @
0

which is the nth moment of the service time distribu-
tion if service times are truncated at x seconds. Also
let

b, =NE, @.7)
and
W, = N2[2(1-py) - (28)

Note that 7L = 11,p =P and that W__ is the expected

4) gince we have p < 1, we consider steady-state results only,
an example of which is T(1).
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One might naturally inquire as to whether these cur-
ves are confined to any particular region in the (W(¢), t)
plane. The answer is definitely yes, ) and we develop
these and other constraints in the next section.

4. RESULTS

In this section we present results concerning the
response functions (W(7)) which are feasible when the
scheduling discipline is based only on attained service
times and elapsed waiting times of jobs. In section 4.1
below we describe several fundamental characteristics
of W() and, in particular, we give a conservation re-
lationship which the response function must satisfy.
In sections 4.2 and 4.3, tight lower and upper bounds
are derived for response functions in the sense that
for any W(t), W)(r) S W(1) < W, (1).

4.1. A monotonicity property and a conservation law
for W(t)

We are considering scheduling disciplines in which
each job is characterized by : (1) its attained service
time, 7, and (2) its elapsed waiting time, fy,. There-
fore, the state of the system is the number of jobs in
the system and ¢ and #, for each job. A particular
scheduling discipline may effectively ignore one or
both of these parameters, but this information is as-
sumed to be available for each job. Because schedul-
ing decisions are made only on the basis of these two
parameters, the following statement is self-evident.
The history of a job requiring #; = ¢ seconds of ser-
vice from the time of its arrival at the system until it
has received ¢ seconds of service is independent of the
exact value of 7. A direct consequence of this fact is
that W(r) is a nondecreasing function or equivalently

aw
W'(t) = il >0

= (4.1)

In deriving Wy(t) and W, (1) we shall need another
result which is given below. From [8] we have that

n(6)=N[1-B@O] W' ) +11 , (4.2)

where n(f) is the density of jobs in the system with

¢ seconds of attained service time. We define the “work”
in the system at the time 7 as the additional time re-
quired to empty the system if no new arrivals are per-

7 In fact, if the reader looks at this figure and squints his eyes,
he can almost guess the shape of such bounds.
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mitted entry; this is also referred to as the “unfinished
work” and as the “yirtual waiting time.” The mean
work W in the system tan be expressed as

W= f n(¢)E [remaining service time for ajob
0 with attained service time of ] ds

or

dr .

W= -
‘0/; n(r) tf (1—1) e

Substituting from (4.2)
w=x [ W@+ [ (r-1)aB (r)ar
0~ 0

By changing the order of integration

w=x [ [f(w’(m 1)(T—t)dl‘:| dB(7) . (4.3)
0 0~

Integrating the inner integral by parts,
T
[ W@+ De-nar
0~

T i

+ f [W(r) + ] dt

0~ 07

1l

(—0)(W(1) + 1)

Il

f (W(r)+ 1] dr .
4

Substituting into eq. (4.3),

W=\

f [(W(r) + t] di dB(7).
2

Again changing the order of integration,
W= [ W+ [ dB@d
t

=N (W) + 1] [1-B@®)] dr .

ORS Ol&sg

But in general, we have that

f t[1-B(n)] dt=31> .
0



System Models
Pr[service time = kql =px k=1, D43 il

where ¢ is the time quantum discussed in section 2.
Therefore, the only possible service time requirements
are multiples of g. We shall also assume that arrivals
may take place only during the instant before the end
of a quantum and that the processor is assigned to a
job for a quantum at a time. The probability that an
arrival takes place at the end of a quantum is g sO
that the mean arrival rate is \. It should be clear that
any continuous service time distribution can be ap-
proximated arbitrarily closely by a discrete time
distribution by letting q approach 0. Also, these re-
strictions on the service discipline and arrival me-
chanism are effectively eliminated when g ~ 0.In
this discrete time model our goal is to maximize
W(kq).

We claim that the following scheduling rule is ne-
cessary and sufficient to maximize W(kq): no alloca-
tion of a kth quantum is made to any job where there
is some other job in the system waiting for its jth
quantum where j # k. We note in passing that many
scheduling disciplines will satisfy this rule.

We relabel the time axis so that = 0 at an ar-
bitrary point in some idle period. The times at which
some job is allocated a kth quantum we call “critical
times.” Let ¢; be the time that the ith critical time 0cC-
curs. We wish to maximize ¢; (the average of ¢;) for
some fixed /, and we will show that to accomplish
this it is necessary and sufficient to satisfy the condi-
tion that at the /th critical time no job is waiting for
a jth quantum where j # k. Certainly this condition
is necessary since if a proposed scheduling discipline
did not have this property then ¢; can easily be in-
creased when the condition is not satisfied as follows:
follow the proposed schedule until the point where
the Ith critical time would occur and then assign a
quantum to a job waiting for its jth (s k) quantum.

Since we have already shown necessity, to prove
the sufficiency of the condition for maximizing cr
we need only show that any schedule satisfying the
condition yields the same value for ¢;. Let A be any
scheduling algorithm which satisfies the rule that at
the Ith critical time no job is waiting for jth quantum
where j # k. Let a; be the time at which the /th job ar-
rives which will require at least kg seconds of service.
The state of the system ata; will, in general, depend
on the algorithm A. In particular, the number of criti-
cal times that have ocecurred prior to a; (et this be §)
is a function of A. Let E o [¢c;—a state of system at
a;] be the expected value of ¢~ under algorithm A
conditioned on the state of the system at ¢;. The state
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of the system is given by the number of jobs in the
system, the attained service time of each job in the
system and s, the number of critical times that have
occurred. Thus, we have

Ep lcj—al state of system at ¢;]

=E\ [remaining work in system not requiring
a kth quantum |state of system at ¢

+(I-s—1)E [remaining service time for job
with (k—1)q seconds of attained
service]

+(k—1)q

+ Nt g_nyg Ea leralstate of the system at ;] -

(4.8)

But the sum of the first two terms on the right-hand
side of this equation is equ al to the expected amount
of work in the system at given the state at 4. Thus

E [c—alstate of system at a;]
= [ 5 [work in system at g;[state at )
+(k—1)q
+ 7\7(,(#1)(1 E p [cj—aIstate of system at a;]

Removing the condition on the state of the system at
a; we have

Ex lej-a)l =Ea [work in the system at a;)
+ (k=1)q + Nge-ngEaleral
or

E 5 [work in system at ¢;] + (k—1)q

Epleal =

But E , [work in system atq;| isnota function of the
particular scheduling algorithm and therefore
B [¢;—a;] does not depend on A. Since Elc]
=E|ca) tE [¢;] and the right-hand side is in-
dependent of A, Elcl is independent of A. Note
that the form of eq. (4.8) depended on A having the
property thatat ¢ there are no jobs in the system
waiting for a jth quantum where j # k. We have now
shown that this condition is necessary and sufficient
to maximize E [¢;] (= ¢)) -

We now show that the general scheduling rule to
maximize W(kq) is the same rule which maximizes
¢ applied for all . We have

W(kq) = liinw (é ) —Ié ﬁ,)/n : (4.9)
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Fig. 6. Bounds on response for M/E,/1,t=1.0,A= 0.75,
p=0.75.

infinity; conversely, the most discriminating schedul-
ing algorithm (FB) touches the lower bound at 7= 0
and forms the asymptote for the upper bound as ¢ ap-
proaches infinity. The above-mentioned behavior of
the upper and lower bounds applies not only for the
M/M/1 system, but also holds true for any M/G/1 sys=
tem in general, although the rate of convergence for
the bounds to their respective limits varies for dif-
ferent service distributions.

For the second example we choose the system
M/E, /1. In this system we have

dB(x)
= (u)2xe 2 x =0

(5.1)

with mean service time equal to 1/u; the second mo-
ment of this distribution is~3/2u2. Because the sec-
ond moment is smaller than that of the exponential
distribution (whose value is 2/u?), the bounds are
tighter in this example than the M/M/1 case, just as
one would expect. Fig. 6 shows the behavior-of this
system with 1= 1 and A=0.75.1tis obvious from

the figure that for ¢ > 5/u, the upper and lower bounds
have essentially re ached their asymptotic form.
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Fig. 7. Bounds on response for M/H, /1,1=1.0,A= 0755
p=0.75.

In the third example we show the bounds for the
M/H,/1 system, where Hy stands for hyperexponen-
tial service distribution with

dB(x) ¥ e
5 = 05K B 40 Supe

=08

(5.2)

We choose tq = 5u, My = (5/9)u, resulting in a mean
service time of 1/u. The second moment of this distri-
bution is 82/25u2. Fig. 7 shows the behavior of the
M/H,/1 system with p=1and A=0.75. The upper
and lower bounds approach their respective limits at a
slower rate than either M/M/1 or M/E,/1 because of
the larger second moment.

For our last example we choose the system M/U/1
where U stands for uniform service distribution. For
this particular example we have

0.25 2<x<6
dB(x) A

= (5.3)
0 otherwise

and A=0.1875,1=4.0,p=0.75. Fig. 8 shows the
behavior of this system. Notice that when 7> 6, the
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Fig. 10. Variation of bounds for M/M/1 with p = 0.25,0.50,
0.75:

by the curves given in section 5. We note here that
although the results were expressed for processor-
shared systems, the same type of results apply to the
case ¢ > 0.

We might observe some additional properties
which follow from our results. First we see that any
W(t) may touch the lower bound at most once (ex-
cept over the semi-infinite interval #; < when
B(ty) = 1); the same may be said for the upper bound.

Secondly, we find that we are able to respond to
the following kind of specification. Suppose thata
designer requests that all jobs of duration t < t* should
have an average wasted time W(f) < W* Then if
W* = W (t%), itis possible to guarantee at least this
behavior (for example, by an ML system where the
first level is FCFS out to £¥). Such a specification
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seems to us to be quite natural. The next obvious need

is to specify the bounds on W(t) which exist for t>1t*
Lastly, we pose the more general question which,

at the time of this writing remains unsolved, namely,

what are the necessary and sufficient conditions for

a given response function to be feasible? This paper

has presented some important necessary conditions.
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