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Abstract

In this paper we investigate various schemes of input-queueing ATM switching systems.
We first give a brief description of the Odd-FEven switch model which is followed by an
approximate analysis for evaluating its throughput. We then introduce an extension of the
0Odd-Even model which employs a Multiple Input-Queueing strategy, where an input port is
expanded into m queues. In fact, we consider two policies as far as arbitration among the
input queues is concerned and we show how thoughput can increase as m gets larger. We also
comment on the special case where m = N, for an N x N switch, and show that the achieved
throughput is actually 100%. We call this last scheme Virtual Output-Queueing. The models
under examination assume a uniform output destination distribution and a Bernoulli process
for the cell arrivals.
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1  INTRODUCTION

As we witness the proliferation of the ATM technology, it becomes quite evident the critical
role switches are required to play to support the objectives of ATM networks. Switches, as
an integral part of an ATM network not only support fast cell-relaying but also provide for
network management, such as connection admission control, flow and congestion control,
resource allocation, multicasting and other functions. This has allowed for various switch
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architectures to emerge and be proposed as standards. As a matter of fact, we cannot single
out a particular switch design as a superior one, since each switching system is suitable,
in terms of functionality, according to the specific network requirements. ATM switching
systems have been covered quite extensively in the literature (Chen, 1991), (Onvural, 1994)
and different schemes have been studied and characterized in terms of various aspects, such
as location of buffers, switch fabric design, switching (i.e. time vs. space division), routing
and congestion control (i.e. leaky bucket) and buffer management.

If cells are stored between the input ports and the switch fabric then the switching archi-
tecture is characterized as an input-queueing. On the other hand, if buffering of cells occurs
between the switch fabric and the output trunks then the switch is classified as an output-
queueing. A third option exists, where cell buffers are located inside the switch fabric (thus
shared among the input and output ports), in which case this queueing discipline is described
as internal or central queueing. Hybrid switch architectures exist adopting a combination or
extension (i.e. recirculation) of these buffering strategies with the analogous cost in terms if
complexity and management.

Input-buffered switches exhibit a blocking phenomenon known as head-of-line (HOL). HOL
blocking occurs when more than one cell attempts to access the same output port. Also, since
during the period of a time slot only one cell can be switched to the requested output, the
remaining cells destined to the same output port can either remain buffered at their HOL
positions (and try again in the next slot), thus blocking the cells queued behind them, or
they can be simply discarded from the input queues, so no blocking occurs. As a result, HOL
blocking can severely affect the throughput (which we define here as the utilization of the
output ports averaged over the number of ports) of an input-queueing switch and normally
large buffers are needed. For an ordinary input-buffered switch throughput is found to be
2 — /2 ~ 0.586 (Karol, 1987). In contrast, in output-buffering, each output is assigned a
dedicated FIFO buffer where cells contending for the same output are all switched, within
the same time slot, to the corresponding FIFO (but only one can be transmitted on the
output link). Therefore, with output-queueing the ideal throughput of 100% can be actually
achieved.

In this paper we demonstrate a few alternatives to ease the HOL blocking and consequently
improve the switch throughput. The simulation results presented refer to the maximum
attainable throughput (we consider a saturation point) for different values of N (switch
size). The analytical results show the asymptotic (N — oo) throughput behaviour of the
switch under investigation. Switches are modeled as multi-queue, multi-server, time-slotted
queueing systems. Queues at the inputs are FIFOs and assumed of infinite size. In clarifying
some of the terminology we will be occasionally using thoughout the paper, by new cells we
mean any incoming cells that arrive at the input ports, while by fresh cells we describe these
cells that move up to the HOL position (they were either queued or, if the FIFO was empty,
they are new).

As for the organization of the paper : section 2 presents a rather concise description of the
0Odd-Even model and continues with an approximation analysis of the model. In section 3
we extend and generalize the Odd-Even model by introducing the Multiple Input-Queueing
switch, which we study under two different arbitration policies. Finally, section 4 gives some
concluding remarks.

*We would like to thank Larry Roberts of Connectware Inc. for bringing this model to our attention.
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2 THE ODD-EVEN MODEL

2.1 Switch Description

In this subsection we briefly present the Odd-Even switch (a more thorough treatment can
be found in (Kolias,1996) ). We consider an N x N crossbar, nonblocking, input-buffered
switch, where the innovation is that each input is split (expanded) into two FIFO queues
which we call Odd and Fven for this type of dual input queueing. By convention, we refer
to outputs numbered as 2,4,6,... as even while to 1,3,5.... as odd ports. An incoming cell
destined to an odd (even) numbered output port joins the odd (even) queue of the input
port to which it was fed and waits for its turn to be switched to its output. Queued cells
move up to the head of these queues that switched their HOL cells, so that they can get
involved in the next output contention resolution cycles. Contention resolution for the HOL
cells takes place in two consecutive contention resolution rounds. Arbitration during the first
round involves the HOL cells at the even input queues. In the second round cells at the
HOL of the odd input queues contend for the odd output addresses. However, those input
ports whose even queues could not access an output port in the first round, because they
either lost the contention (and therefore were blocked) or simply did not have any HOL cells
present, are allowed to participate in a contention among their odd queues in the subsequent
second round. In this fashion, an input port always gets a chance to route a cell either from
an even or an odd queue, but not from both, within the same time slot. For fairness, if the
even FIFOs were tried first in a time slot the odd ones are polled in the next one and vice
versa.

Traffic intensity is equal for every input link (same traffic load is applied to each of the
N input ports). The output address of an incoming cell is assigned randomly among the N
output ports with equal probability. Both these assumptions characterize our system as a
homogeneous one.

As far as the selection policy is concerned, the longest waiting in the HOL position cell
is chosen among those contending for the same output, by the arbitration controller (when
there is a tie the lowest numbered input queue is the winner). However, in the analysis
that follows, we implicitly assume that the winning HOL cell is chosen randomly, since the
selection policy has no bearing on the switch throughput (for this homogeneous system).

2.2 Approximate Analysis

Because of the various service dependencies introduced by the arbitration policy, where we
assumed that even slots (during which even FIFOs can first transmit) are interchanged with
odd slots (odd FIFOs can first transmit), an exact analysis of the switch’s behaviour becomes
intractable in terms of calculating the stochastic quantities involved. Therefore, we propose
an approach where we analyze an approximate model, which is based on assuming a slightly
modified arbitration policy. More specifically, we assume that all time slots are characterized
as even, which means that the even FIFOs are given some priority in transmitting their
HOL cells. The intuition behind this approach is that unclaimed output ports will still get
the opportunity to receive (serve) HOL cells, given that output addresses are uniformly
distributed. Due to this modified service policy we expect that the throughput achieved by
the even output ports will be higher than the one for the odd outputs.



We make the following distinction among the N input ports: we call an input port available
(for the second round) if no HOL cell was switched from its even FIFO (either there was not
one or it lost the contention). Conversely, it is unavailable if the corresponding even FIFO
switched a cell through one of the even output ports. We denote the throughputs achieved
by the even and the odd output ports, as yg and o respectively.

We first derive an exact expression for vg and then approximate yo, where, as we will
see, the latter actually depends on vg. Our approach is similar to the one described in (Hui,
1987). We focus on an even numbered output j (the “tagged” output) and we denote by NJE
the number of HOL cells at the even queues destined for output j. In steady state, yg can
be defined as :

v = AE% S E[e(NF) = E[¢(NF)), (1)

71s Even
where Ag is the arrival rate of new cells at the even queues, assuming a non-saturation
situation and e(z) is an indicator function ( e(z) = 0 if © <0, e(x) = 1 if z > 0). Note that
the even HOL cells can be switched from any of the N (even) input queues to any of N/2
even output ports.

Let also N denote the total number of HOL cells blocked (i.e. lost the contention) at the
even queues after the first contention round. Then :

NF= > NF— > €NPF). (2)

71s Even 71s Even
Taking now expectations in (2) and combining it with (1), we get, by symmetry :

2E[NE
Mg =8 = E[N]] - % (3)
Let pg be the steady-state probability that there is a fresh even cell at the HOL position of
an even queue given that the HOL cell has departed and Mg denote the number of released
even HOL positions (those that had a cell switched) at the end of the first contention round,
then clearly :

Mg =N — NF. (4)
The flow conservation relationship describing the system for the even queues states :

N

E[l‘fE]pE = 5

where intuitively %

(output ports), which defines the throughput of the even outputs. By taking expectations
on both sides in (4) and using (5) we get :

= Mg is simply the expected fraction of the busy even servers

E[NEF] o A (6)
N QpE
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Let now K]-E denote the number of HOL cells destined to output j, in the next time slot,
then :

KPP = NF —¢(NF)+ A7, (7)

where AJE is the number of fresh HOL cells destined for output j. Forming the expectations
on both sides of (7) and considering the steady-state case we have :

E[KP] = E[NF]. (8)
Taking into account (1) and (8), (7) yields' :

E[A7] = E[e(N])] = Ap. (9)
In finding E[N¥] we first square (7) as follows :

(K7) = (N)? + e(N]) + (A7)? = 2N + 2NJ AT — 2¢(N}) A7,

where by taking expectations and then using (8) and (9) we further get :

E[AP(AF —1)]
2(1 - E[AF])

E[NF] = E[A7] + (10)

In determining E[AJE(AJE —1)], as in (Hui, 1987), we can argue that AJE becomes Poisson(Ag)

as N — oo§, thus we have :
E[A7(A] — D] = X, (11)

and E[NJE] can be directly expressed as :

)2
E[NF]=Xp+ —E—. 12

[N] E+2(1—>\E) (12)
Applying (6) and (12) in (3), we further obtain :

Y AR

Ap = Apt+——E——2(1-— 1
which leads to the following equation :
(2 — pE)A\p — 2(2p + D)Ag + 4pr = 0. (14)

Since we are interested in maximizing throughput, then by letting pg = 1 (i.e. all even HOL

tAlso derived from first principles about flow conservation.

$Note that N — oo, practically means a switch with sufficiently large N, i.e. close or larger than 100.
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positions are occupied), we get :
Mg =3 — V5~ 0.764, (15)

which, again, represents the throughput achieved by the even output ports.

It now remains to obtain the throughput of the odd output ports. Because not all the
input ports are available for the second contention round it is clear that the throughput of
the odd output ports can be potentially limited due to that unavailability factor. Let 6 be
the fraction of the N input ports that are available for the second arbitration round, then
ON is the expected number of odd queues that are allowed to switch a HOL cell to an odd
destination port.

Setting up the same equations as we did for evaluating Ag, where ¢ is now the “tagged”
odd output, we have :

2

Yo = Ao = N E E[e(N?)] = Ele(N?)], (16)

115 Odd
or

2E(NY]

Yo = do = E[N?] - ==,

(17)

where \o is the input arrival rate at the odd queues and NP is the number of available

odd HOL cells destined to (odd) output z and NP is the number of blocked odd HOT, cells.
Then, by letting My be the number of odd ports that became free at the end of the second
contention round, we have :

E[My] = 6N — E[N?]. (18)
The flow conservation for the odd outputs is expressed as follows :

N
E[[Mo]po = 5/\0 (19)

Then, by taking expectations in (18) and using (19) we have :

=522 (20)

If K€ is the r.v. for the number of available odd HOL cells destined for output i in the next
time slot and A9 is the number of fresh odd HOL cells then, in general, we cannot claim
that :

KP? = NP — ¢(NP) + A?, (21)

since queues that were available may become unavailable in the next slot (after the even
queues arbitration round) while any of those that were unavailable may become available.
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However,

o K= > NP— 3 eNOY+ Y AP+ R-B (22)

115 odd 115 odd 115 odd 115 Odd

where R denotes the number of input ports that become available in the next time slot while
B represents the number of input ports that become unavailable (and which may include
any fresh HOL cells). At steady state the expected number of unavailable input ports should
remain the same, therefore F[R| = E[B]. Now, taking expectations in (22) we have :

> EIK?]= Y EIN?]- X E[(ND)]+ > E[A7], (23)

iis Odd iis Odd iis Odd iis Odd

and we can make the assumption that, by symmetry :

E[K?] = E[N?] = E[«(N?)] + E[A?], (24)
and since E[K?] = E[N?], (24) then implies :

E[A?] = E[(N?)] = do. (25)

Proceeding as before, we can approximate the distribution of AY by a Poisson()\,) distribu-
tion as N — oo and conclude that :

/\2
E[N° =)o+ —C9 . 9
By substituting (20) and (26) in (17) we get :
A2 Ao
do=Xdo+—2— —206—- = 2
o o+2(1_)\0) ( 2p0> (27)

which, for pp = 1, yields :
Ao = 1426 — V462 + 1. (28)

Now, since ¢ denotes the fraction of those input ports that are available at the end of the
first arbitration round, then we can express it, using (6), as

A
§=1-—2, (29)
ZpE

Then from (28) and (29) and for pg = 1 we finally get Ao ~ 0.646, which is the throughput
for the odd output ports.

Note, that in (28) for 6 = 1 (i.e. all input ports are available at the beginning of the second
round) Ao = 3 — /5 and for § = 0, obviously, Ao = 0. Also, for § = 1, (N/2 input ports are
available), we get Ao = 2 — /2, which of course agrees with previous analysis (Karol, 1987)
(i.e. consider an % X % switch).



We also observe that 1 + 26 — /462 4 1 is an increasing function of § and from (13) we

AQ

actually have § = ﬁ

which yields Az = 3 — /5. Thus, pp = po = 1 yields the maximum achievable throughput
for both the even and the odd outputs and therefore for the switch.

Since we now have the throughput for both the even and the odd output ports, we can

finally find, as an approximation, the throughput for the whole system, namely the Odd-Even

switch, by normalizing Ag and \p, as follows :

which is maximized when \g is maximized, namely for pg = 1,

vy = 222 5 0.705. (30)

We notice that v & 0.705 is in a very good agreement (within 1% range) to the simulation
result of 0.713 for the Poisson, uniform traffic case (Kolias,1996).

3 MULTIPLE INPUT-QUEUEING SWITCHES

In this section we present an extension of the Odd-Even model. Assuming an N x N single-
stage, input-buffered switch, instead of having only two FIFOs (odd and even) per input
port, we allow m queues per input port, where m < N (the switch size). It is essential
to emphasize here the distinction between an input FIFO queue and an input port. As
in the Odd-Even model, output ports are partitioned into m groups (it is not particularly
important how we allocate the output ports to the groups, as long as we assume uniformity
of the output addresses). That means each of the m queues is associated with one or more
(depending on N) output ports, so that an incoming cell joins a particular queue according
to its output port destination. We realize that the larger the m is, the more complex the
system becomes, in terms of implementation of the arbitration scheme. There is no extra
cost induced regarding the additional buffers, since each input port buffer (of size i.e. b) can
be throught as being partitioned into m smaller buffers (of size b/m).

We study this Multiple Input-Queueing system in two different versions with respect to
the arbitration policies.

3.1 Policy A

The arbitration process, under this policy, is a direct extension of the one mentioned in the
Odd-Even scheme and takes place in m consecutive contention rounds (within the same time
slot). Therefore, it can be considered as a generalization of the Odd-Even scheme. At the
i-th round, only FIFOs that are available (whose input ports have not switched cells during
the previous i-1 rounds) can compete for output ports. This kind of policy can limit the
switch throughput, since even if there are HOL cells destined to a particular output, that
output might stay idle. However, we notice from the simulation results (figure 1) that as m
grows to infinity, the asymptotic throughput approaches 1 very quickly (always under the
assumption of saturation at the inputs).

In fact, for m = N, that is, the number of FIFOs per input port is equal to the total
number of outputs, throughput is 1. Basically, in this form of input-queueing each input
port has a dedicated buffer for each of the outputs. Therefore, the achieved throughput is
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100% since, effectively, there is no HOL blocking. This type of buffering has exactly the same
result as the pure output buffering scheme, where there is no blocking whatsoever and cells
are switched immediately to their corresponding output buffers. We call this type of input
queueing, where essentially output buffering is emulated by buffers at the inputs, Virtual
Output-Queueing.

Figure 1 illustrates the simulation behaviour of this general model, for different values of
m, namely for m=1 (the ordinary input-buffered switch, (Karol, 1987) ), m=2 (the Odd-
Even switch), and m=>5, 10, 20, 50 and 100. We see that for m > 10 we obtain diminishing
gains in throughput and most notably when m = 50 is doubled.

m=2

Throughput

m=1

o
6]
T
I

04 ' '
1 10 100 1000

Switch Size (N)

Figure 1 Throughput of a Multiple Input-Queueing Switch under policy A (simulation).

3.2 Policy B

Here we study a variation of policy A, where we allow all N input FIFOs (not only from
those input ports that did not transmit a cell during the previous rounds) to participate in
each of the arbitration rounds. Actually since we do not distinguish between available and
unavailable input ports (all input ports are available), we can assume that the contention
for the outputs is completed in just one round, where all mN input FIFOs can participiate.
In other words, we can view this system as an m/N x N switch where the N inputs are
expanded into mN and a new cell joins a particular FIFO queue, depending on the cell’s
output address. Under this policy the m/N queues are considered to be indepedent.

Let us now concentrate on analytically obtaining the switch throughput for this type of
multiple input queueing. As in subsection 2.2, let v be the total throughput of the switch
and N; denote the number of HOL cells that are destined to a “tagged” output j. Then, at
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steady-state, we have :

1= A= 1 3 ElN)] = Ble(N;)] (31)

71=1

where )\ is the probability that a new cell arrives at an input port at the begining of a time
slot.
If N, is defined as the number of all HOL cells that became blocked at the end of a slot

(after the arbitration phase is over), then clearly :

Ny =3 N;j—>_ e(N)). (32)

i=1 i=1

Taking expectations on both sides in (32) and using (31) we can then rewrite throughput as
follows :

A=~ =E[N,] - EEIVV”]. (33)

Recall that, if M represents the number of unblocked FIFOs then :

E[M] =mN — E[N]. (34)
The flow conservation rule implies :

E[M]p= N, (35)
where p is again the steady-state probability that a fresh cell occupies the HOL position

immediately following the departure of the HOL cell. Taking into account (34) and (35),
(33) can be modified as :

A= E[N;] - (m — %). (36)

If K; denotes the number of HOL cells destined to the j-th output port during the next
time slot and by letting A; be the number of the “fresh” HOL cells destined to j, then :

]X’j = ZVJ' — 6([\[]') —I— A]‘. (37)
Taking expectations in Eq. (37) then, since at steady-state F[K;] = E[N;], we get :

\ = Be(N,)] = FIAJ. (39)
By squaring Eq. (37) and taking expectations we finally obtain :

E[A;(A; —1)]

E[N;] = E[A}] + m

(39)



MULTIPLE INPUT-QUEUEING SWITCHES 11

As we mentioned before, as N — oo, A; becomes Poisson()), thus :
E[A;(A; - 1)] = X%, (40)

then (39) becomes :

/\2
E[NJ=A4 ——. 41
By substituting (41) in (36) we get :
A2 A
A=A+ ———(m—"= .

where for p = 1, solving (42) we find :

A=m+1—V1+m? (43)

which is the maximum throughput of the m-FIFO multiple input queueing switch.

1.1 ' '
1.0 m=100 |
m=10
09 m=5 4
— 08 i
2 m=2
o
S
S 07 |
o
= 06 1]
05 i
04 ' '
1 10 100 1000

Switch Size (N)
Figure 2 Throughput of a Multiple Input-Queueing Switch under policy B (simulation).

Figure 2 shows simulation results for switches with m =1,2,5,10 and 100. Applying the
result of (43) for these values of m the consistency between the theoretical and the simulation
results becomes obvious.

Note that for m = 1, (43) yields A =2 — /2, while for m =2, A =3 -5 (see (15)).
Also, in the limit, as m — oo, (43) yields A = 1. Let’s give the physical explanation of this
result: as m — oo then also N — oo which practically means that there are as many FIFOs
per input port as the total number of output ports, namely m = N. For m = N, policies
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A and B have ultimately the same effect, in terms of throughput, and under a saturation
situation; so our remarks in the previous subsection are reinforced here.

4 CONCLUSION

It is apparent that buffering (location, size, contention resolution) in an ATM switching
system is of great importance to the switch designer, in terms of complexity, efficiency and
certainly cost (i.e. hardware implementation). In this paper we were concerned with the
performance efficiency of input-buffered switches, acknowledging that the other factors are
significant too. In that respect, we studied various schemes using multiple input-queueing as
their buffering strategy by analyzing their performance in terms of throughput and demon-
strated how throughput can be improved.
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