
LAPRAD: LLM-Assisted PRotocol Attack
Discovery

R. Can Aygun
rcaygun@cs.ucla.edu

UCLA

Yehuda Afek
afek@tauex.tau.ac.il
Tel-Aviv University

Anat Bremler-Barr
anatbr@tauex.tau.ac.il
Tel-Aviv University

Leonard Kleinrock
lk@cs.ucla.edu

UCLA

Abstract—With the goal of improving the security of In-
ternet protocols, we seek faster, semi-automatic methods to
discover new vulnerabilities in protocols such as DNS, BGP,
and others. To this end, we introduce the LLM-Assisted
Protocol Attack Discovery (LAPRAD) methodology, en-
abling security researchers with some DNS knowledge to
efficiently uncover vulnerabilities that would otherwise be
hard to detect.

LAPRAD follows a three-stage process. In the first, we
consult an LLM (GPT-o1) that has been trained on a broad
corpus of DNS-related sources and previous DDoS attacks
to identify potential exploits. In the second stage, a different
LLM automatically constructs the corresponding attack
configurations using the ReACT approach implemented
via LangChain (DNS zone file generation). Finally, in
the third stage, we validate the attack’s functionality and
effectiveness.

Using LAPRAD, we uncovered three new DDoS attacks
on the DNS protocol and rediscovered two recently re-
ported ones that were not included in the LLM’s training
data. The first new attack employs a bait-and-switch
technique to trick resolvers into caching large, bogus
DNSSEC RRSIGs, reducing their serving capacity to as
little as 6%. The second exploits large DNSSEC encryp-
tion algorithms (RSA-4096) with multiple keys, thereby
bypassing a recently implemented default RRSet limit. The
third leverages ANY-type responses to produce a similar
effect. These variations of a cache-flushing DDoS attack,
called SigCacheFlush, circumvent existing patches, severely
degrade resolver query capacity, and impact the latest
versions of major DNS resolver implementations.

I. INTRODUCTION

Internet protocols are inherently complex and vulner-
able, requiring researchers to quickly detect and fix
weaknesses. Several studies, such as GRoot [1], and the
work by Siu et al. [2], have explored formal modeling
approaches for DNS, aiming to systematically analyze
the protocol and uncover vulnerabilities. However, these
approaches require substantial manual effort to model
the protocol and result in only a partial protocol model,
limiting the verification of protocol logic, as is the case
in the DNS protocol which is complex with 297 RFCs
[3].

In recent years, large language models (LLMs) have
shown success in tasks like natural language understand-
ing [4], text generation [5], and code generation [6].

In this paper we harness LLMs technology and prompt
engineering to develop LAPRAD, a methodology to

assist in the fast and efficient discovery of vulnerabilities
in Internet protocols. We show how LAPRAD enables
a security researcher familiar with the DNS protocol to
identify potential DNS protocol DDoS vulnerabilities,
and test these ideas in a controlled testing environment
in an automated fashion. It follows three key steps:
(1) the researcher provides an example attack to the
LLM, which generates similar attack ideas and refines
them through iterations. (2) another LLM automatically
generates a suitable zone file for the discovered attack
idea using the ReACT approach; and (3) the researcher
tests the attack using the generated zone file in a real
testing environment.

This methodology leverages LLMs’ extensive knowl-
edge of DNS protocol features and security warnings
from RFCs and public sources (e.g., DNS-OARC, IETF
DNSOP mailing lists), offering a faster alternative to the
labor-intensive process of manually analyzing protocol
documents and security forums. Moreover, LLMs retain
information from remote, hard-to-find sources that may
no longer be available, such as public mailing lists and
conference websites. Thus serving as a valuable resource
for future vulnerability research.

We use LAPRAD (our main contribution), to make
the following additional contributions:

• Identified three distinct new variants of the
CacheFlushing vulnerability based on DNSSEC.
These variants bypass recently issued CacheFlush-
ing patches [7] affecting the latest versions of major
DNS resolver implementations (BIND 9.18.31 [8],
Unbound 1.22.0 [9], and Knot 5.7.4 [10]), signifi-
cantly degrading their throughput.

• Automatically generate attack zone files (an error-
prone process), along with a high-level execution
guide to comprehensively illustrate the discovered
vulnerabilities (Section IV-B2).

• Assisting in pinpointing exact RFC sections and
sentences that represent the root cause of the dis-
covered vulnerabilities, while providing clear rea-
soning explaining why these elements contribute to
the vulnerabilities (Section IV-B3).

• Re-discovering two recent DNS attacks, KeyTrap
[11] and CacheFlush [12], without these attacks
being part of the LLM’s training data.

ar
X

iv
:2

51
0.

19
26

4v
1

 [
cs

.C
R

]
 2

2
O

ct
 2

02
5

https://arxiv.org/abs/2510.19264v1

To develop effective mitigations for the newly discov-
ered attacks, we conducted measurements on DNSSEC-
enabled domains within the Cloudflare Top 100,000 list
[13]. Based on these observations, we identified practical
limits and proposed mitigation preventing abuse of the
DNSSEC mechanism.

Section 2 provides background information on
DNSSEC and the role of LLMs in this research, and
related work. Section 3 outlines the threat model. In
Section 4, we introduce the LAPRAD methodology, for
discovering both known and zero-day attacks. Section
5 details the experiments conducted on the newly dis-
covered attacks. Section 6 discusses findings and future
work, and Section 7 concludes the paper.

II. BACKGROUND AND RELATED WORK

LLMs are AI systems that generate human-like text
by analyzing patterns with deep learning. Trained on
massive datasets, they capture context and meaning to
produce coherent responses [5].

Prompt engineering structures inputs to improve LLM
responses. For our prompts, we applied techniques such
as in-context learning [14], where prompts include ex-
amples (e.g., network protocol RFCs); one-shot learning,
where a single example guides the model [5]; role-based
prompting (e.g., ”You are a DNS expert”) [15]; Chain
of Thought prompting, which helps the model outline
logical steps [16]; ReAct, which allows LLM agents to
interact with the external environment, retrieve outputs,
and adjust their actions accordingly [17]; and the Multi-
LLM agents approach, which involves multiple distinct
LLMs collaborating to complete a task.

DNSSEC esures the autheticity of DNS responses,
protecting from unauthorized responses, e.g., cache poi-
soning attacks. Each RRSet is signed by the domain’s
DNSKEY (which is protected by a chain of trust-keys
starting at the root NS), ensuring response authenticity,
with signatures stored in RRSIG records. DNSSEC is
inherently complex, as it incorporates redundancy, high
availability, and strong security mechanisms.

DNS DDoS Attacks NRDelegation exploits non-
responsive authoritative responses to trigger excessive
retries, depleting server CPU resources [18]. KeyTrap
targets DNSSEC by sending malicious packets that force
intensive cryptographic computations, resulting in CPU
exhaustion [11]. CacheFlush [12] attack exploited large
resource record sets, packing up to 2,000 NS records
into a single response, 65kB, per malicious query. An
attacker sending 1K qps (queries per second) easily
flushes a 100MB resolver cache, reducing throughput by
80%. Different recent patches mitigate these including
the latest, by capping RRSets at 100 records, rendering
the CacheFlush attack infeasible with standard DNS
RRSets.

DNS Protocol Modeling and Attack Discovery GRoot
[1] introduced a formal model for DNS resolution to
detect configuration errors such as rewrite loops, black-
holing, and missing glue records. Liu et al. [2] improved
DNS modeling by formalizing resolver logic, including
query state, and caching. However, these models provide
a limited view of the actual DNS protocol.

Applications of LLMs in Network Security LLMs
have been applied to identify security issues in both
general applications and network protocols. For exam-
ple, they have been used to enhance fuzzing for IoT
devices [19] and to identify inconsistencies in 4G/5G
documentation [20]. Eywa [21] used LLMs to generate
partial DNS resolver functions for testing and finding
vulnerabilities. In contrast, our approach uses protocol
knowledge directly, making vulnerability identification
easier without relying on implementation. Google used
LLM agents to identify a previously unknown stack
buffer underflow in SQLite by leveraging a relevant code
change—and guiding the system to search for similar
issues [22]. This approach relates to our work as it trains
LLMs on past examples to find similar vulnerabilities
though it focuses on code-level issues.

III. THREAT MODEL

In our threat model, the attacker controls a client to send
malicious DNSSEC queries and an authoritative server
to host domains that return crafted replies with excessive
bogus data. An attacker can purchase a single domain
for about $1 and create unlimited subdomains (e.g.,
sub1.attacker.com, sub2.attacker.com) at no extra cost.
A single malicious domain can inject around 200KB of
junk data into the cache, meaning 500 subdomains could
flush a 100MB cache, while a 2GB cache may require
10,000. Using 20,000 subdomains is even more effective,
as it forces the resolver to fetch new domains from the
attacker’s authoritative server. Bogus DNSSEC RRSIGs
can be generated on the fly without cryptographic oper-
ations, requiring no extra memory per RRSet, so adding
subdomains has minimal impact on cost or cpu/memory
usage. This attack model is well-known and used in
CacheFlush [12] and KeyTrap [11].

An attacker can run an authoritative server on a budget
in two ways: hosting it on the cloud, with outgoing
traffic costing around $0.60 per minute for a 2GB
cache-flushing attack, or using managed DNS services
like GoDaddy’s premium plan, which offers unlimited
subdomains and requests for $15 per month [12].

IV. LAPRAD METHODOLOGY FOR DNS

Here we present the LAPRAD methodology for dis-
covering DNS and DNSSEC DDoS vulnerabilities. We
used GPT-o1 for attack discovery workflows and GPT-
v4o for basic queries and secondary tasks [23]. We
uncover new DNSSEC CacheFlushing vulnerabilities,
and re-discovered recently published DNSSEC and DNS

attacks — KeyTrap [11] and CacheFlush [12] — which
were not part of GPT’s training data. Both papers
were published after the October 2023 training cutoff
date of the models used. Due to space limitations, we
outline only the key steps of the newly discovered
SigCacheFlush attacks and briefly cover the Keytrap
discovery. The full LLM conversations for all discovered
vulnerabilities are available online [24].

A. LLM-Assisted Protocol Attack Discovery (LAPRAD)

LAPRAD is a conversational, multi-step prompting-
based strategy for attack investigation, designed to sys-
tematically leverage LLM assistance to discover vulner-
abilities, as illustrated in Figure-1.

Step-1: Attack Idea Investigation We instruct the
LLM to act as a DNS security expert, providing a
detailed example DNS-based DDoS attack description
to guide its understanding. The LLM is then prompted
to generate alternative DNS-based DDoS attacks target-
ing CPU, memory, or network bandwidth. An example
initial prompt in this Step-1 is shown in Prompt-1.
The LLM produces a list of attack ideas for a human
researcher to review:
- The researcher manually selects one of the proposed
attack ideas generated by the LLM.
- The researcher instructs the LLM to elaborate on the
selected attack idea, refining it to make the attack more
advanced. The goal in this step is to uncover protocol
features that an attacker could exploit to enhance the
effectiveness of the attack.
- This feedback loop is repeated for several rounds until
the attack idea is sufficiently interesting to the researcher
for testing.

Step-2: Attack Configuration Generation The se-
lected attack idea, shown as Output-1 in Figure-1,
is combined with a benign zone generation script to
automatically create an attack zone generation script
tailored to the attack requirements.
Step-3: Testing Perform a test on the LLM-proposed
attack using the DNS zone file generated in Step-
2(Output-2). If the attack is invalid or the researcher
opts to try a different idea, the process returns to Step-1
to select another attack.

Prompt-1

You are a DNS security expert. Here is an example of a
DNS attack that affects the cache of the resolver and reduces
its performance:
NS Cache Flush Attack: An attacker owns an au-
thoritative server and controls the example.com domain.
The attacker issues A-type queries for different unique
names under this domain, such as test1.example.com, ...,
test10000.example.com. The attacker’s authoritative server
responds to these queries with approximately 1500 NS
records, making the DNS reply reach the maximum allowed
size of 65 KB. Each of these records is cached by the re-
solver, leading to the eviction of benign cached records. This
forces the resolver to re-query these domains, significantly

reducing its performance.
Task: Come up with another cache-flushing attack based
on DNSSEC. Utilize your DNSSEC knowledge and explore
potential mechanisms that could be used to target a resolver
for cache flushing purposes.

B. Discovering New DNS Vulnerabilities

Here we use LAPRAD to discover new DNSSEC-
based cache-flushing vulnerabilities and analyze their
implications in three steps, see Figure-1. Step-1 de-
scribed below, Step-2 in Section IV-B2, and Step-3 in
Section V.

1) Step-1: Attack Idea Investigation
We used the recently discovered CacheFlushing attack

[12] as an illustrative example in Prompt-1 and tasked
the LLM with identifying novel methods to flush a DNS
resolver’s cache through DNSSEC features, ultimately
uncovering the SigCacheFlush vulnerabilities.

GPT responded to Prompt-1 by suggesting an attack
that combines multiple DNSKEYs and signatures, multi-
ple DS records, and NSEC3 records. We focused on the
aspect involving large DNSKEY records and multiple
signatures, as shown in (GPT-Response-1). Then we
used this answer to follow up with GPT using Prompt-2.

GPT-Response-1

The attacker’s domain is signed with multiple large
DNSKEY records. For instance, it can include: Multiple
RSA-4096 keys, ..., or A mix of RSA/ECDSA/EdDSA al-
gorithms... Each DNSKEY RRset might be tens of kilobytes
when combined (especially if multiple RRSIGs are present).

Prompt-2

Focus on GPT-Response-1. How many RSA 4096 keys can
fit into a 65KB DNS response, including all the RRSIGs as
well?

GPT-Response-2
Each DNSKEY record and its associated RRSIG con-
sume: Per-key size=600 bytes (DNSKEY)+400 bytes
(RRSIG)=1,000 bytes per key ...The total number of
DNSKEY records is: Number of keys=Available space/Per-
key size= 65035/1000=65(max-rsa packet- [24])

The CacheFlushing patches [7] set a default limit of
100 records per RRSet(BIND’s maximum-records-per-
type setting). GPT-Response-2 enables an attacker to
stay within the 100-record limit while generating large
responses. We named this variation, Multiple RSA-4096
Signatures-based Cache Flushing (multi-rsa [24]).

To evaluate GPT’s reasoning ability regarding this
patch [7], we introduced a stricter limit and aimed to
reach the maximum DNS packet size of 65KB using
only two DNSKEYs instead of 100 (Prompt-3):

Prompt-3

BIND has set a maximum limit of 2 records for any RRSet
type. We need to be more creative to generate large responses
containing 65KB answers in a single response, rather than

Fig. 1. Attack Investigation Workflow. The human figure indicates where human assistance is required to complete the task. The dashed line
connects Output-1 (the attack idea) from Step-1 to Step-3, illustrating that it will be tested using the attack zone configuration (Output-2).

multiple responses. Focus on any unbounded field that can
help achieve this goal.

In GPT-Response-3, GPT notices that DNSKEY and
RRSIG RDATA fields are unbounded and proposes using
two large DNSKEYs as a workaround for the Patch
challenge.

GPT-Response-3
...nothing in the DNS wire-format truly prevents using
absurdly large keys (e.g., 32k- or 64k-bit RSA). RRSIG
RDATA: With a gigantic RSA key, the signature can also
be thousands of bytes. In total, these 4 records can easily
approach or exceed 60 KB if you size them aggressively.
The DNS packet can reach the 65,535-byte maximum ...
Resolvers can impose strict upper bounds on DNSKEY or
RRSIG sizes and either truncate or refuse them. ... Some
validating resolvers already treat extremely large keys as
misconfigurations and fail validation.

GPT-Response-3 states DNSSEC protocol specifica-
tions do not strictly limit signature size, though ex-
tremely large signatures may be rejected by resolvers.
Then, we asked Prompt-4.

Prompt-4

Would resolvers accept very large DNSKEYs or signatures?

GPT-Response-4

...Even if a resolver does not explicitly reject large keys, it
might run out of memory or trigger other internal limits (e.g.,
“message size,” “maximum memory usage,” or “maximum
TTL for suspicious data”).

GPT-Response-4 states that large signatures are often
impractical due to query timeouts from excessive mem-
ory overhead. As validation fails in such cases, we asked
GPT the question in Prompt-5. Finally, GPT proposed
an approach that bypasses the resolver validation and
allows the resolver to cache the bogus signature in GPT-
Response 5.

Prompt-5

If we want to have a resolver accept a very large RRSIG
without actually validating it, how can we achieve this?

GPT-Response-5

... At least one of your DNSKEYs uses a mainstream
algorithm (e.g., RSA/SHA-256) that the resolver recognizes.
That legitimate key signs your zone normally, producing
standard-sized RRSIGs that fully validate.
Using that huge unknown-algo DNSKEY, generate an enor-
mous signature (the RRSIG).
...at least one RRSIG from a recognized algorithm, the
zone passes DNSSEC validation overall. The “unknown
algorithm” RRSIG is effectively ignored for validation. The
resolver sees it, doesn’t know how to validate it, but does
not treat the zone as bogus.
Typically, the resolver caches all RRs returned from the
authoritative server—even those it did not use in successful
validation

Fig. 2. Bait & Switch Cache Flushing Attack

The idea described by GPT in GPT-Response-5 sug-
gests that a very large DNSSEC signature (RRSIG) can
be cached by the resolver, provided the response includes
at least one valid RRSIG for the corresponding RRSet.
We named this attack Bait & Switch CacheFlushing
Attack (bait-discovery- [24]). Figure 2 illustrates the
attack mechanism. In this example, the attacker responds
with two RRSIG records: RRSIG1, a valid signature
that the resolver successfully verifies, and RRSIG2,
a bogus signature approximately 64KB in size. Al-
though only RRSIG1 is validated, the resolver caches
both signatures. Each query by the resolver—for the
DS and DNSKEY RRSets—receives a 65KB response
containing similar bogus data. As a result, a single
malicious DNSKEY query causes roughly 130KB of
bogus data to be inserted into the resolver’s cache. The
SigCacheFlush attack we discovered using LAPRAD

bypasses the CacheFlush patches [12], which limit the
number of NS records returned. Our attack leverages
large DNSSEC signatures instead, making it unaffected
by these mitigations.(Prompts for the ANY Type Cache
Flushing Attack are omitted due to space, available at
(any-discovery- [24])).

The number of prompts to discover an attack (NPD)
and unique GPT-generated ideas per prompt (NIP) (for-
matted as (# of ideas for 1st prompt, 2nd prompt,...))
in Step-1 are: Multiple RSA (4, 1), Bait and Switch
(4, 1, 4, 4, 1, 1), ANY Type attack (4, 8, 1, 1), Cache
Flush-CNAME (3, 4, 4, 4, 1), KeyTrap (5, 1, 1, 1, 8,
5, 1), with NPD ranging from 2 to 7.

2) Step-2: Attack Configuration Generation
We used GPT to generate detailed attack steps and

configurations, including the attacker’s zone file. Al-
though GPT successfully outlined the steps, the gener-
ated zone files were inconsistent and too abstract for
direct implementation. To address this issue, we imple-
mented a ReACT-based script to automatically generate
zone files without human intervention (Figure-1, Step-2).

(2.1) The attack idea’s zone requirements from Figure-
1, Step-1, are passed to the ReACT script, which then
calls the zone generation script to create a basic DNS
zone (e.g., sub.example.com). The LLM then checks if
the zone file meets attack requirements, modifying the
script iteratively for up to n = 5 iterations until the
requirements are satisfied.
(2.3) Once the attack zone is structured, the ReACT
script runs named-checkconf for syntax and rule vali-
dation. If errors occur, they are reported to the LLM,
which updates the zone generation script to fix them.
(2.4) After validation, the generated zone file is uploaded
to a virtual machine. The ReACT script then checks the
BIND server startup logs for errors. If issues arise, the
zone generation script is sent back to the LLM with
the BIND errors for further corrections. These steps are
combined in Step-2, as the Zone File Testing Script.
(2.5) The final version of the zone generation script
is run in a loop to generate thousands of zone files,
each with a given domain name as a parameter, ensuring
sufficient attack subdomain configurations based on the
victim resolver’s size.

3) Source of Information
We investigated the sources of information for the

newly discovered vulnerabilities in three steps. First
(1), we asked GPT how it formulated a specific idea,
such as using a small valid signature alongside a large
bogus one, explicitly requesting the exact RFC number
and a verbatim quote. GPT provided reasoning and
accurate RFC numbers, but the quotes were hallucinated.
Next (2), we combined this initial response + (Attack
Summary) + (Full RFC Text) → Instructed GPT
to find relevant sentences. Finally (3), GPT correctly
identified the sentences within the given RFC.

4) Proposed Mitigations
Bait & Switch Cache Flushing Attack mitigation:

Prevent oversize responses by limiting RRSIG signature
size, with the default cap set to the maximum signature
size of supported algorithms, RSA-4096 (744 bytes).

Multiple RSA-4096 Signatures-based Cache Flushing
Attack mitigation: Lower the default max-records-per-
type for DNSKEYs, and for RRSIGs per RRSet, from
100 to 20. Analyzing Cloudflare’s top 100,000 domains,
we found 9,336 DNSSEC-enabled domains. As shown
in Figure-3 b), none of which require more than 16
DNSKEYs. Setting a default limit to 20 would consid-
erably reduce the effect of the attack.

ANY Type Cache Flushing Attack mitigation: ANY-
type queries can trigger large cumulative responses be-
cause each RRSet type’s RRSIG is treated as a distinct
RRSet, with limits applied separately. This allows nu-
merous signatures (e.g., 100 for NS RRSIG and 100
for MX RRSIG). Setting separate limits for ANY-type
queries can prevent this.

Fig. 3. For the top 9,336 DNSSEC-enabled domains and their TLDs,
panel (a) presents the DNSSEC response packet size distribution, while
panel (b) shows the DNSKEY distribution (up to 16 keys per domain,
with values from 11 to 16 keys omitted as they account for only 0.05%
of domains).
C. Re-discovering Existing DNS Vulnerabilities

KeyTrap attack [11] exploits DNSSEC’s KeyTag
collusion flaw, where multiple keys match the same
KeyTag. Since resolvers must try all matching keys until
one validates the signature, attackers can force excessive
computations by triggering these collisions.

LAPRAD re-discovered the KeyTrap attack (keytrap-
discovery [24]) in 7 prompts. We replace the example in
Prompt 1, in Step-1, with the NRDelegation attack [18],
following the refinement process in Figure 1, Step-1.
Due to space limitation, we only show the final GPT
response below.

GPT-Response-6

Repeated Signature Validation Attempts: ... scenario with
100 DNSKEYs and 100 corresponding RRSIGs, a resolver
could be driven to perform up to 10,000 individual signature
validation checks 100 DNSKEYs:Each DNSKEY has the
same key tag or otherwise appears to be a valid candidate
(e.g., due to multiple DS records referencing all of them).

100 RRSIGs: Each RRSIG claims to sign the DNSKEY
RRset (or some relevant RRset), Trying Each DNSKEY
Against Each RRSIG:In a naive (or maliciously forced)
validation process, the resolver sees RRSIG 1 and tries
all 100 DNSKEYs before determining which one (if any)
actually matches. Then it moves on to RRSIG 2, tries
all 100 DNSKEYs again, and so on through RRSIG 100.
Multiplying the Checks: 100 RRSIGs x 100 DNSKEYs =
10,000 signature validations....

V. EXPERIMENTS

We tested the three newly discovered attacks in a Docker
environment to verify that they generate 65KB DNSSEC
responses accepted by BIND, Unbound, and Knot. All
three produced responses close to 65KB, which were
successfully cached by the tested resolvers, confirming
their feasibility.
We analyzed DNSSEC responses from 9,336 domains
and found an average packet size of 449 bytes(Figure-3,
a). SigCacheFlush attacks amplify this by 144×. Since all
three attacks aim to flush the resolver’s cache using large
responses, we focused our performance evaluation on the
Bait-and-Switch attack, which is the most intricate one.

Step-3: Testing (Figure-1) A human expert gets a;
detailed attack idea, high-level testing guide from the
LLM, and an attack zone file to complete the test.

The performance impact of the Bait-and-Switch at-
tack was evaluated in an Azure cloud environment. The
setup included an attacker’s authoritative server, a benign
authoritative server, a recursive resolver, an attacker
client, and a benign client. Each machine had an Intel
Xeon E5-2673 v4 @ 2.30GHz (2 vCPUs), 8 GiB RAM,
and Ubuntu 20.04.

To evaluate resolver performance under a Bait-and-
Switch attack, we use the Resperf [25] tool, a widely
accepted standard for measuring resolver throughput. In
this test, we measured the resolver’s maximum through-
put by using two query files: the attacker’s Resperf query
file contained 10,000 unique subdomains under a single
purchased domain (see Section III for cost calculation),
while the benign query file contained 100,000 unique
domain names. Both clients began with an empty cache:
the benign client gradually increased its query rate until
the resolver reached its capacity, while the attacker client
maintained a steady query rate.

We tested the attack using three attacker query rates:
300 qps, 1,000 qps, and 3,000 qps. The tests were per-
formed on the latest versions of three resolvers—BIND
9.18.31, Unbound 1.22.0, and Knot 5.7.4—all config-
ured with a 100MB cache. Each test was repeated three
times, and the average results are shown in Figure-4, a) .
Resolver throughput is reported as the maximum number
of benign queries per second.

During the BIND tests, we observed a transient peak
of approximately 4,000 benign QPS for the 1,000 QPS
attacker. However, once the attack took effect, all benign
responses from the resolver resulted in ’SERVERFAIL’

(Figure-4, b)). In contrast, both Unbound and Knot ex-
perienced a significant drop in benign QPS under attack.
Notably, Unbound never returned ’SERVERFAIL,’ while
Knot occasionally did, but at a rate of less than 1%.

Table-I presents the caching behavior of open re-
solvers for the newly discovered SigCacheFlush vul-
nerabilities. First, we queried the resolver for large
DNSSEC records of a domain under our control, then
terminated the domain’s authoritative server. If the re-
solver continued responding to queries for this domain
as before, it indicated successful caching; otherwise, it
was merely relaying responses. Each resolver was tested
only once to minimize disruption to legitimate services.

Open Resolver B&S MK ANY
Google Public DNS (8.8.8.8) ✓ ✓ ✓
Cloudflare DNS (1.1.1.1) ✓ ✓ ×
Quad9 (9.9.9.9) ✓ ✓ ✓
OpenDNS -Cisco (208.67.222.222) ✓ ✓ ×

TABLE I
COMPARISON OF OPEN RESOLVERS FOR BAIT AND SWITCH

(B&S), MULTIPLE RSA KEYS (MK), AND ANY-TYPE
SIGCACHEFLUSH ATTACKS. (✓) INDICATES THAT THE RESOLVER

SUPPORTS (OR IS VULNERABLE TO) THE FEATURE; (×) MEANS THE
OPPOSITE.

VI. DISCUSSIONS AND FUTURE WORK

Currently, human operators drive the attack investigation
process by focusing on answers they believe might lead
to new attacks. This approach limits the scope of attack
discovery, as it is influenced by the operator’s intuition.
Despite this limitation, we demonstrated that a viable
attack could be achieved using a small number of general
questions (2-7), with the only bias being the selection of
target answers. This underscores the potential for further
automation in the attack discovery process.

In future work, we aim to eliminate human involve-
ment in the attack discovery loop by automating Step 1
of LAPRAD using ReACT [17] and multi-LLM agents.
This will enable dynamic decision-making and iterative
refinement during attack idea generation and RFC-based
fact-checking.

VII. CONCLUSION

This paper introduced LAPRAD methodology which
has shown the effectiveness of LLMs in identifying,
analyzing, and addressing vulnerabilities in the DNSSEC
protocol. Given a DNS attack targeting the resolver
cache, LAPRAD led to the proposal of three new
variants of the initial example attack, each exploiting
completely different protocol features than the original.
By leveraging detailed protocol features and adapting
to constraints, LAPRAD successfully generated sophis-
ticated attack ideas, such as the bait-and-switch and
KeyTrap attacks.

We identified previously unknown DNSSEC-related
vulnerabilities and confirmed our approach by testing
LLMs on existing vulnerabilities not included in their

Fig. 4. a)Resolver Benign Max QPS Performance with Bait&Switch Attack (excluding SERVERFAIL responses) under constant attack rates
of 0, 300, 1,000, and 3,000 QPS. b) Detailed benign response rates of resolvers benign max QPS under a bait-and-switch attack at constant
1,000 QPS. The attack starts at 0s, marked by the black arrow.

training set. The methodology we outlined can be ap-
plied to any network protocol or software system with
well-documented standards, such as protocol RFCs.

Our findings demonstrate that LLM-assisted network
vulnerability investigation is a promising foundation for
further automation. Moving forward, we aim to create a
highly automated LAPRAD framework that minimizes
human involvement while maximizing the discovery of
vulnerabilities. (An extended version of this study is
available at [24].)

ACKNOWLEDGMENTS

We thank George Varghese (UCLA) for helpful discus-
sions and Shoham Danino for assistance with the testing
environment. We thank Petr Špaček (ISC), Yorgos Thes-
salonikefs (Unbound), Otto Moerbeek (PowerDNS), and
other DNS-OARC Mattermost members for their role
in responsible disclosure and helpful discussions. This
work was supported in part by a grant from the Sunday
Group to The UCLA Connection Lab, as well as by
ISF Grant No. 1527/23, a grant from the Blavatnik
Interdisciplinary Cyber Research Center (ICRC) at Tel
Aviv University, and the Blavatnik Family Fund.

REFERENCES

[1] S. K. R. Kakarla, R. Beckett, B. Arzani, T. Millstein, and
G. Varghese, “Groot: Proactive verification of dns configura-
tions,” in Proceedings of the ACM SIGCOMM ’20, 2020, pp.
310–328.

[2] S. Liu et al., “A formal framework for end-to-end dns resolution,”
in Proceedings of the ACM SIGCOMM 2023 Conference, 2023,
pp. 932–949.

[3] “PowerDns.” [Online]. Available: https://www.powerdns.com/
[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“Bert: Pre-training of deep bidirectional transformers
for language understanding,” 2019. [Online]. Available:
https://arxiv.org/abs/1810.04805

[5] T. Brown et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol. 33, pp.
1877–1901, 2020.

[6] M. Chen et al., “Evaluating large language models trained on
code,” arXiv preprint arXiv:2107.03374, 2021.

[7] “Cve-2024-1737.” [Online]. Available: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2024-1737

[8] “BIND 9 - ISC.” [Online]. Available: https://www.isc.org/bind/
[9] “Unbound.” [Online]. Available: https://www.nlnetlabs.nl

[10] “Knot DNS.” [Online]. Available: https://www.knot-dns.cz/
[11] E. Heftrig, H. Schulmann, N. Vogel, and M. Waidner, “The

harder you try, the harder you fail: The keytrap denial-of-service
algorithmic complexity attacks on dnssec,” in Proceedings of the
ACM CCS 2024, 2024, pp. 497–510.

[12] Y. Afek, A. Bremler-Barr, S. Danino, and Y. Shavitt, “A flushing
attack on the {DNS} cache,” in USENIX Security 24, 2024, pp.
2299–2314.

[13] “Top100kDomains.” [Online]. Available:
https://radar.cloudflare.com/

[14] Q. Dong et al., “A survey on in-context learning,” arXiv preprint
arXiv:2301.00234, 2022.

[15] A. Kong et al., “Better zero-shot reasoning with role-play
prompting,” arXiv preprint arXiv:2308.07702, 2023.

[16] J. Wei et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Advances in neural information process-
ing systems, vol. 35, pp. 24 824–24 837, 2022.

[17] S. Yao et al., “React: Synergizing reasoning and acting in
language models,” arXiv preprint arXiv:2210.03629, 2022.

[18] Y. Afek, A. Bremler-Barr, and S. Stajnrod,
“{NRDelegationAttack}: Complexity {DDoS} attack on
{DNS} recursive resolvers,” in USENIX Security 23, 2023, pp.
3187–3204.

[19] X. Ma, L. Luo, and Q. Zeng, “From one thousand pages of
specification to unveiling hidden bugs: Large language model
assisted fuzzing of matter {IoT} devices,” in USENIX Security
24, 2024.

[20] M. M. Rahman, I. Karim, and E. Bertino, “{CellularLint}: A
systematic approach to identify inconsistent behavior in cellular
network specifications,” in USENIX Security 24, 2024, pp. 5215–
5232.

[21] S. K. R. Kakarla and R. Beckett, “Oracle-based protocol testing
with eywa,” arXiv preprint arXiv:2312.06875, 2023.

[22] “Google project zero, from naptime to
the big sleep,” accessed: 2025-01-17. [Online].
Available: https://googleprojectzero.blogspot.com/2024/10/from-
naptime-to-big-sleep.html

[23] “GPT-4.” [Online]. Available: https://openai.com/index/gpt-4/
[24] “All investigation conversations.” [Online]. Available:

https://tinyurl.com/gptconversations
[25] “Resperf.” [Online]. Available: https://www.dns-

oarc.net/tools/dnsperf

