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Abstract—Due to a poor understanding of the interactions
among transmitters, wireless networks using carrier sensemultiple
access with collision avoidance (CSMA/CA) have been commonly
stigmatized as unpredictable in nature. Even elementary questions
regarding the throughput limitations of these networks cannot be
answered in general. In this paper, we investigate the behavior of
wireless CSMA/CA networks to understand how the transmissions
of a particular node affect the medium access, and ultimately
the throughput, of other nodes in the network. We introduce a
theory which accurately models the behavior of these networks
and show that, contrary to popular belief, their performance
is predictable and can be described by a system of equations.
Using the proposed theory, we provide the analytical expressions
necessary to fully characterize the capacity region of any wireless
CSMA/CA network. We show that this region is nonconvex in
general and agnostic to the probability distributions of all network
parameters, depending only on their expected values. Our theory
is also shown to extend naturally to time division multiple access
(TDMA) networks and to predict how the network responds to
infeasible input rates.

Index Terms—Capacity, CSMA/CA, wireless networks.

I. INTRODUCTION

W IRELESS CSMA/CA networks have been considered
a difficult modeling problem because transmissions

from a particular node affect the medium access of several
other nodes in an intricate way. Basically, whenever a node
transmits in a wireless CSMA/CA network, any other node that
overhears this transmission should remain silent and wait for
it to finish before attempting to access the medium again [1].
This silence, in turn, may be interpreted by its own neighbors
as an indication that the medium is idle, and thus trigger new
transmissions. Due to this strong interdependence among the
state of transmitters across the network, a theory which fully
characterizes and predicts the behavior of wireless CSMA/CA
networks has only been a vision so far.
The difficulty in creating such a theory mainly stems

from: 1) the distributed nature of the CSMA/CA protocol itself,
which dictates that transmitters should back off from each
other to avoid collisions; 2) the limited radio range of nodes,
which creates different broadcast domains whose behaviors
are interdependent; and 3) the buffer dynamics of unsaturated
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traffic sources, which occasionally cause queues to become
empty and result in a time-varying subset of nodes contending
for the channel. The first issue induces some correlation among
neighbor transmitters because of their physical proximity;
the second and third issues correlate transmitters throughout
the network because of the traffic pattern. For accuracy, a
throughput model must then consider both the proximity of
transmitters, with their respective interference constraints, and
the traffic requirements of the network flows.
In this paper our goal is to propose such a model in order

to understand the fundamental throughput limitations of wire-
less CSMA/CA networks. In particular, we answer specific
questions regarding the network capacity. For instance, if the
throughput of flow increases by 10%, how much can an
interfering flow still achieve? Or even, if a new flow
starts, by how much must and reduce their rates to keep
the network stable? To the best of our knowledge, even after
decades of research, the answers to these quite elementary
questions are still unknown in general.
To address this, we develop a theory which models the

behavior of wireless CSMA/CA networks and also predicts
their throughput performance. It has the unique ability to
model the buffer dynamics of unsaturated sources, while still
respecting the interference constraints imposed by the wireless
medium. Our theory is general and has no restrictions on the
node placement, being thus suitable for arbitrary topologies.
Its key feature is the ability to fully characterize the capacity
region (i.e., the set of feasible input rates) of any wireless
CSMA/CA network. We prove that this region is convex for
the case where nodes are all within carrier-sense range, but
nonconvex in general. We also show that the capacity region
is completely agnostic to the probability distributions of all
network parameters, such as the backoff, the transmission, and
the interarrival times, depending only on their expected values.
To achieve these results, we determine the conditions under

which a wireless CSMA/CA network is stable and converges
to a steady state. The probabilities , that an independent link
set is transmitting, are well characterized through analytical
expressions. We show that the problem of finding these steady-
state probabilities can be formulated as two separate systems
of equations, each with a unique solution. The first system de-
fines the common format of the solution, and it is always linear;
the second system determines the stability factors, and it is non-
linear in general. Finally, our theory is also shown to extend
naturally to TDMA networks, and to predict how the network
responds to infeasible input rates.
The remainder of this paper is organized as follows. In

Section II, we present the key assumptions used to derive the
proposed theory. Section III presents our throughput model,
and Section IV discusses network stability. We show how the
capacity region can be characterized in Section V and how to
predict the network behavior under infeasible input rates in
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Section VI. In Section VII, we present simulations to demon-
strate our theoretical results. Section VIII presents the related
work, and Section IX concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a wireless networkwhere nodes are not all within
range of each other. Single-hop flows are assumed, with each
node transmitting traffic to a given neighbor. Both the flows
and their average input rates do not change, at least for a suf-
ficient amount of time, to allow convergence to a steady state.
For ease of presentation, nodes are assumed to communicate in a
single radio channel and to have a unique transmission queue for
each flow. Packet scheduling across the different queues within
a node is realized with the CSMA/CA MAC protocol, as de-
scribed below. Basically, each queue acts as an individual col-
located transmitter, with its own backoff counter, and operates
as if it was a different node altogether.
An idealized CSMA/CA MAC protocol is assumed to

control the medium access [2]–[9]. In CSMA/CA, before
sending a packet, each transmitter first verifies whether the
medium is idle via carrier sensing [1]. If the received power is
above a given threshold, the medium is considered busy and
waits for the ongoing transmission to finish. Otherwise, the

medium is considered idle and samples a random backoff
interval from a given continuous probability distribution
(possibly different for each node) and waits at least this long
before transmitting. The backoff interval is not required to be
exponentially distributed as in [3]–[9]. In fact, we place no
assumptions on its distribution. Each queue within a node is
considered a separate transmitter with an individual backoff
counter to store the remaining time until the scheduled trans-
mission. If the medium becomes busy during the backoff
interval, then freezes its counter and resumes the countdown
only after the medium is idle again. When the counter is decre-
mented to zero, the packet is finally transmitted.
The duration of a packet transmission is modeled as fol-

lows. Each transmission from takes a random time ,
depending both on the packet size and on the bit rate. The bit
rate of each transmitter is assumed fixed, and thus the
randomness of comes only from the different packet sizes
generated by the flow source. We do not require packet sizes
to be exponentially distributed [3]–[8]; instead, packets are
generated according to a given discrete probability distribution
of sizes (possibly different for each node). Transmitters are
also not necessarily saturated [2], [5]–[11]. In fact, packets are
generated at each node following an exogenous arrival process.
After a newly arrived packet, each transmitter samples an
interarrival interval from a given continuous probability
distribution (possibly different for each node). A counter is used
to store the remaining time until the next arrival and, similar
to the backoff case, this counter also freezes when the medium
becomes busy. After the arrival counter is decremented to zero,
a new packet is placed into the queue, and the process repeats.
No assumption is made on the interarrival time distributions1.

1Freezing the arrival process is required for our model to be analytically
tractable and still allow arbitrary interarrival time distributions. This constraint
is missing in our preliminary conference paper, but it is required for the product-
form solution in (11) to hold.

TABLE I
THE NOTATION USED IN OUR MODEL

During transmissions, packets are susceptible to reception
errors. As in previous work [2], [3], [5], [6], [8], packets are
assumed to be received without interference, with the random
noise and fading in the wireless channel being the only error
sources. This imposes two assumptions on the network model.
First, there are no hidden terminals in the network, and there-

fore, if two transmitters interfere at a common receiver, both
are able to sense each other's transmission and back off accord-
ingly. This is proven to occur if the carrier-sense range is suf-
ficiently large and if receivers can abort an ongoing reception
to lock onto a new signal with sufficiently higher power [12].
Atheros chipsets already allow this kind of preemption in the
so-called restart mode, and thus the hidden terminal problem
can be avoided [11].
Second, the carrier sensing is instantaneous, and thus, as soon

as a transmission starts, it is immediately detected by neigh-
bors. This implies that both the propagation delay and the car-
rier-sense delay are zero. This is reasonable since nodes are
usually physically close to each other and carrier sensing takes
only a few microseconds in current wireless cards. With instan-
taneous carrier sensing, collisions due to transmitters finishing
their backoff intervals at the same time are not possible, since
these intervals are continuous random variables.
With these assumptions, each packet transmitted by is re-

ceived with a probability , the packet delivery ratio at the
chosen bit rate . If the transmission fails, the transmitter sam-
ples another backoff interval and rebroadcasts the same packet
as many times as necessary. This model is known to approxi-
mate the behavior of transmitters well [2], [5], [6]. Nonetheless,
even if hidden interferers and collisions do exist in the network,
their effect is considerably reduced in the unsaturated conditions
considered in this work.
In CSMA/CA networks, several links may transmit together

if their transmitters cannot hear each other. We define a set of
links able to simultaneously transmit as a feasible set, and we
use or to represent it throughout this paper. We define
as the probability or the fraction of time that the network is in
state (i.e., links in are simultaneously transmitting), and
thus . We use to represent the fraction of time
that no link is transmitting across the entire network. With a
slight abuse of notation, the probability that both and

are transmitting is written as .
At last, we let be the ratio between the

expected transmission time and the expected backoff in-
terval of . Table I summarizes our notation.
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III. THROUGHPUT MODELING

In this section we describe our approach for calculating the
throughput of each transmitter in a CSMA/CA network. First,
the case of saturated transmitters is described in Section III-A.
We introduce the notion of unfinished work in CSMA/CA net-
works, and use it to show the results of Liew et al. [2]. Then, in
Section III-B, we generalize these results for unsaturated trans-
mitters. In this case, sources do not always have a packet to
transmit, resulting in a time-varying subset of nodes contending
for the channel.

A. Saturated Transmitters

Let the network have transmitters able to carrier sense each
other and assume that each transmitter is saturated with an in-
finite backlog. In these conditions, whenever someone is trans-
mitting, the others freeze their backoff counter and wait for the
ongoing transmission to finish. Fig. 1 depicts this scenario for
a network of three nodes and shows the unfinished work
of each transmitter at time . The unfinished work represents
the remaining time before the state of changes, and it can
be either the remaining backoff or the remaining transmission
time. We know from the saturation condition that must al-
ways be either backing off, frozen, or transmitting. For each
packet, a backoff interval is sampled, and waits at least this
long before transmitting. If during this interval a neighbor starts
transmitting, then freezes its backoff counter and waits for the
neighbor to finish. When the counter reaches zero, transmits
the packet for seconds, after which the cycle restarts.
There are states in which such a network can be. The first

state is , which occurs when nobody is transmitting; the
other states are when a transmitter is active while
the others are frozen. The steady-state solution then defines
the probabilities of each state.
Let be the transmission count from node in a large

time window . If, within this time, completed trans-
missions, then it also backed off times, since for each trans-
mitted packet there is a backoff interval. Realizing that each
node only decreases its backoff counter when nobody is trans-
mitting (i.e., when the network state is ), the ratio
can be computed as

(1)

where and are the duration of the th backoff
interval and the th transmission of , respectively. We see
that does not depend on the individual distributions of

and , but rather only on the ratio between their expected
values.
From (1), a system of linear equations can be written as

(2)

Fig. 1. The operation of three saturated links within carrier-sense range. The
graphs show the unfinished work of each transmitter at time , which
can be either the remaining backoff or the remaining transmission time.

which, along with the normalizing condition , can
be solved to find the steady-state solution as

(3)

The throughput of is then .
Now assume that there are still links in the network, but

not all transmitters are within carrier-sense range. As a result,
two or more links may transmit at the same time. A saturated
CSMA/CA network is proven to be a Markov random field
in [2], and the relation between any two adjacent network states,
and , is shown to be

(4)

with an equivalent result also being achieved in [3]. Note that (4)
generalizes the relation in (2) for the case where transmitters are
not necessarily within carrier-sense range. From (4), a system of
linear equations can then be written as

(5)

which, along with the normalizing condition , can
be solved to find the steady-state solution as

(6)

where the summation in the denominator is over all fea-
sible sets . The throughput of can then be computed as

, where the summation is over all sets where
transmits.

B. Unsaturated Transmitters
The previous results are now generalized for unsaturated

transmitters. In this case, after a newly arrived packet, each
transmitter samples a random interarrival interval for
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the next arrival. A countdown then begins, with the arrival
counter freezing whenever the medium becomes busy. Once
the counter reaches zero, a new packet (with a random size) is
placed at the back of the transmission queue.
Let the network have links able to carrier sense each other.

Consider the timeline shown in Fig. 2, where we have three links
within carrier-sense range. The queue backlogs are not infinite
anymore, and thus transmitters have a packet to send only part
of the time. When a new packet arrives at the empty queue of ,
a backoff counter is sampled and the countdown begins. The
behavior is then similar to the saturated network, where each
transmitter freezes its counter whenever a neighbor node trans-
mits. After the counter is decremented to zero, the node trans-
mits for seconds. The time during which a transmitter could
be counting down, but it is not because the queue is empty, is
what we call the idle time. The idle time of the third transmitter
is shown right below the time axis.
Given that transmitters are within carrier-sense range, the

countdown only occurs when the network is idle, i.e., .
However, since the sources are not saturated, each transmitter
counts down only a fraction of this time. If this fraction is
for a transmitter , such that , then, noting (2) and
reducing by , results in

(7)

where is the fraction of time that trans-
mitter counts down, and reflects that counts down
only a fraction of . A system of linear equations can then be
written as

(8)

which, along with the normalizing condition , is
solved with the following steady-state probabilities:

(9)

The throughput of is then .
One would expect the solution in (9) for unsaturated sources

to be different than the solution in (3) for saturated sources.
However, both are remarkably similar. The only difference is
that each component is replaced with . The intuition here
is that (9) is also the solution of another network, with saturated
sources. To see this, note that

(10)

Therefore, the solution in (9) is equivalent to a network where
each source is saturated and has a larger average backoff time

. This scenario is depicted in Fig. 3, which shows the
dual saturated network for the unsaturated network of Fig. 2.
Basically, the backoff intervals are stretched such that each
transmitter has no idle time. In both networks, nodes transmit
during exactly the same time, and thus the steady-state solution
must be the same.

Fig. 2. The operation of three unsaturated links within carrier-sense range. The
graphs show the unfinished work of each transmitter at time . A trans-
mitter is active when its queue is non-empty, but remains idle otherwise.

The idea of stretching the backoff intervals to saturate the net-
work can also be applied when nodes are not necessarily within
range. By stretching the backoff interval of every transmitter,
such that the average increases from to , for
some , the result is a dual saturated network where
nodes transmit at exactly the same time. The steady-state prob-
ability for the unsaturated network must be therefore similar
to (6). However, when nodes are not all within range, the arrival
process must freeze during neighbor transmissions for to have
a product form. By doing so, each node behaves as an inde-
pendent queue while unfrozen, and does not depend
on the network state , as shown in the following theorem. The
proof is in the Appendix.
Theorem 1: By freezing the arrival process, the probability
that a link set is active in an unsaturated network is

(11)

The throughput of is then , where the sum-
mation is over all sets that transmits.
Given that the steady-state solution depends only on the av-

erage values of each transmitter , the probability dis-
tribution of the stretched backoff interval in the dual saturated
network (cf. Fig. 3) does not need to be determined. However,
the vector must still be found to charac-
terize . We defer the expression of to Section VI and instead
discuss its relation to stability in the next section.

IV. NETWORK STABILITY
For a wireless CSMA/CA network to be stable, two condi-

tions must hold: 1) link set stability, i.e., the steady-state solu-
tion must exist, and 2) queue stability, i.e., queues must not
grow without limitation.
Link set stability is guaranteed to occur in any wireless

CSMA/CA network, even if queues have infinite backlogs.
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Fig. 3. The dual saturated network for the unsaturated network depicted in
Fig. 2. The backoff intervals are now stretched such that transmitters have no
idle time. The average backoff time increases from to .

This can be easily seen if we realize that in (11) is also
the solution of a finite irreducible Markov process where the
detailed balance equation holds for any
two adjacent states and . As a result, the steady-state
solution always exists and is unique.
Queue stability, on the other hand, is not always guaranteed.

In fact, only under certain conditions are the transmission
queues stable. We now discuss these conditions and extend the
stability concept to notions of strong and weak stability.

A. Strong Stability

To better understand queue stability, one must first realize the
central role played by the idle time (cf. Fig. 2). If a
queue is idle for a strictly positive fraction of time, then its ar-
rival rate must be strictly lower than its service rate, guaran-
teeing stability. In our case, if for a given transmitter ,
then is strictly larger than , implying that the
nodemust be idle for some time. Since the factors are non-neg-
ative, queue stability then occurs if for each trans-
mitter , or equivalently, if the vector is
bounded as , with the curled symbols and de-
noting componentwise inequalities.We refer to this as the strong
stability condition.
Each factor can thus be thought of as the utilization factor

in queueing theory, and therefore as an indicator of how close
to saturation a given transmitter is. If a transmitter generates
or receives more traffic than its CSMA/CA MAC layer is able
to deliver, then tends to 1 and, if this occurs for all nodes,
then (11) falls back to the case of saturated transmitters in (6).
On the other hand, if generates too little traffic, then tends
to 0, and the network behaves almost as if does not exist at all.

B. Weak Stability
Consider now a given steady-state solution where a factor

violates the strong stability condition. If is as-
sumed fixed, then we know that can never be realized in prac-
tice. However, if this assumption is relaxed, then a possible in-
terpretation for this case is that is feasible as long as the av-
erage backoff interval is reduced by a factor of . In
this case, for , the interval becomes shorter and
satisfies the steady-state solution .
While this reduction ensures that is feasible, it does not

guarantee strong stability. Nonetheless, the network becomes
strongly stable if a strictly shorter average backoff interval
is selected. In particular, if we choose for any

, then the same steady-state distribution is
achieved and strong stability is also guaranteed. Therefore,
any feasible wireless CSMA/CA network has a dual network
which is strongly stable as long as . We refer to this
as the weak stability condition, since it only holds when the
average backoff interval is allowed to be reduced. Clearly,
strong stability implies weak stability, but not vice versa.

V. CAPACITY REGION CHARACTERIZATION
With knowledge of the stability condition, it is possible to

determine the range of input rates under which the network is
stable. Here, we describe the key application for the theory de-
veloped in the previous sections and show how it can be used
to characterize the capacity region of wireless CSMA/CA net-
works.

A. All Transmitters Within Range
Consider at first a network where all nodes are within range

and let be the fraction of time that transmits. In this case,
and . Since ,

the factor can be expressed as

(12)

Applying the weak stability condition to (12), each
must be non-negative, and the sum of the normalized through-
puts must also respect the constraint . From the
strong stability condition , the strict inequality

(13)

must hold for each transmitter . Intuitively, the
factor in (13) is the fraction of time that is not frozen. Within
this time, must transmit for strictly less time than what it
would in the saturated case to guarantee strong stability.
The relation among the throughputs of each transmitter is

clearly linear from (13) and therefore can be easily visualized.
Fig. 4 depicts the capacity region for two fundamental scenarios.
In the first one, we consider a simple network with only two
transmitters within carrier-sense range; Fig. 4(a) shows the ca-
pacity region for this case. From weak stability, both non-nega-
tivity and the linear constraint must hold, creating
the outer capacity region depicted in light gray. From the strong
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Fig. 4. The capacity region for two different topologies. (a) Two transmitters within carrier-sense range. (b) Three transmitters within carrier-sense range. In both
figures, the inner region in dark gray is derived under strong stability, and the outer region in light gray is derived under weak stability.

stability condition in (13), each transmitter imposes a linear con-
straint, and the inner capacity region shown in dark gray is the
area which satisfies both constraints. Its upper boundary is de-
fined by the input rates where at least one transmitter is satu-
rated, and the intersection point is the case where both transmit-
ters are saturated.
Interestingly, the region in light gray for weak stability cor-

responds to the capacity region of a TDMA network. This is
always true, even when nodes are not all within range, since
the condition includes the case where . In this
scenario, each node has an infinitesimal backoff interval, and
thus it spends most of its time either frozen or transmitting.
This corresponds to an ideal TDMA scheme which is able to
perfectly schedule all transmissions across the network without
any control overhead. As soon as a transmission ends, another
one begins almost immediately, and the network state is always
a maximal independent set. Different than traditional TDMA
networks, however, in this case transmissions are not restricted
to start at fixed time slots.
From this insight, the gap between the two regions in

Fig. 4(a) is then the capacity toll paid due to the adoption of
a distributed CSMA/CA coordination (dark gray region), as
opposed to an ideal fully centralized scheduler using TDMA
(light gray region). This gap is typically small in practical
networks, but it can be further reduced by either shrinking the
average backoff intervals (i.e., increasing ), or equivalently,
by increasing the factors, as shown in the figure.
Fig. 4(b) depicts the capacity region for the case of three

links within carrier-sense range. Weak stability constraints de-
fine the outer tetrahedral region in light gray. The linear con-
straint in (13) for each transmitter now represents a plane,
which crosses the axis at and the other axes at 1,
for , resulting in the inner dark gray region. Similar to the
previous case, its upper boundary is defined by the input rates
where at least one transmitter is saturated. The line segments
intersecting the planes represent two saturated transmitters, and
the intersection point represents the case where all three trans-

mitters are saturated. In general, whenever nodes are all within
carrier-sense range, both the inner and the outer capacity regions
are defined by the intersection of several half-spaces, and are
therefore convex.

B. Not All Transmitters Within Range

Consider now the case where not all transmitters are within
range. Let be the throughput vector nor-
malized with regard to link capacity, i.e., .
In addition, define as a column vector with the
steady-state probabilities and as a binary matrix
describing the feasible link sets, with being the number of
sets and being the number of links. Each element in
is 1 if the th link is active in the th set, and 0 otherwise. A
throughput vector is then defined as feasible if there exists a
steady-state solution in the product-form of (11), with ,
such that . Let be the set
of all feasible vectors, i.e., is the capacity region.
From this notation, any feasible throughput vector

can then be obtained from a function of , whose
shape depends on the interference constraints of the wireless
network. We now prove that is bijective, i.e., there is a one-
to-one correspondence between and . In fact, we show that
any feasible is generated by only one steady-state solution ,
and that each solution is generated by only one vector , i.e.,

. The proof is given in the Appendix.
Theorem 2: There is a one-to-one correspondence between a

feasible throughput vector and via , i.e., .
As a corollary, the function must always have an inverse

function , such that, if , then

(14)

To characterize the capacity region, the first step is then to find
this inverse function. However, cannot be easily found from
the solution of a linear system anymore, as in (12). Instead, the
system of equations becomes nonlinear when nodes
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Fig. 5. The capacity region for three transmitters, not all within carrier-sense range. Transmitter hears both and , but and cannot hear each other.
(a) The cross section of the capacity region for . (b) The capacity region, with the plane at depicting the cross section shown at (a).

are not all within range. As a result, symbolical computation or
numerical methods may have to be used to find . Once the
inverse is known, the conditions

or (15)

are used to characterize the capacity region under weak or strong
stability, respectively.
As an example, consider a topology with three transmitters,

such that is within carrier-sense range of both and , but
and cannot hear each other. In this case, from (11),

(16)

from which the system can be built as

(17)

This system can be symbolically solved for ,
and the inverse function is expressed as

(18)

Applying the weak stability condition to (18), each
must be non-negative, and the normalized throughputs must sat-
isfy the constraints and . From the
strong stability condition , the strict inequalities

(19)

must hold for and , and, for , we must respect

(20)

From these inequalities, the capacity region of the network
can be fully characterized, and it is depicted in Fig. 5. For
ease of visualization, Fig. 5(a) shows the cross section for
the case where . The outer capacity region in light
gray depicts the area limited by weak stability constraints, i.e.,
non-negativity and . From strong stability, only
one of the two inequalities in (19) is active when
(i.e., the other inequality is always satisfied), and (20) becomes
an elliptical constraint, creating the inner capacity region de-
picted in dark gray. This region is clearly nonconvex, and thus
the convexity of the capacity region does not necessarily hold
when nodes are not all within carrier-sense range.
Compared with Fig. 4(a), the dashed area in Fig. 5(a) rep-

resents the capacity lost due to the lack of synchronization be-
tween and . If both nodes were perfectly synchronized and
transmitting at exactly the same time, then they would behave
as a single transmitter to . In this case, the dashed area would
be feasible and Figs. 4(a) and 5(a) would be the same. However,
due to the nature of CSMA/CA, transmissions from both neigh-
bors partially overlap at , significantly reducing its medium
access and capacity.
Fig. 5(b) shows the capacity region of the network, with the

plane at depicting the cross section of Fig. 5(a). The
outer pyramidal region is defined by the weak stability con-
straints and , and corresponds to
the capacity region of a TDMA network. The inner region is
defined by the strong stability constraints (19) and (20), and is
depicted with contour lines.

VI. FEASIBILITY AND INFEASIBILITY

In addition to characterizing the capacity region, our theory
has other applications. In Section VI-A, we provide the analyt-
ical expression for each and introduce tests to verify feasi-
bility and, in Section VI-B, we show how to predict the network
response to an infeasible input rate.
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A. Feasibility Testing
We first provide an expression for , from which feasibility

can be tested. Consider the unfinished work of node
(cf. Fig. 2) and assume that the frozen time of is removed
from the timeline. Since both the backoff and the arrival coun-
ters freeze during neighbor transmissions, the behavior of in
this timeline is the same as if it was transmitting alone in the
network. Let be the number of packets generated by
in a large window and be the average interarrival
time of . From the strong law of large numbers for renewal
processes, ; therefore, the total time
gets closer to as . Assuming stability, no

packets accumulate in the queues, and the total time that trans-
mits in is approximately , since each packet
is transmitted times on average. The fraction of time that
transmits in the unfrozen timeline is then

(21)

where the right-hand side is the fraction of time that transmits
when it is alone, from (11). Isolating in (21) results in

(22)

Any average interarrival time is then weakly
stable (i.e., ). If , then it is
strongly stable as well (i.e., ).
We now provide a second test to determine if a given vector

is feasible without having to resort to a
graphical solution (cf. Section V). Let be the overall av-
erage interarrival time at including its frozen time. Assuming
stability and following the same logic as before, the fraction of
time that transmits must then be

(23)

where the second equality holds from (21). From Theorem 1,
we know that the relation is one-to-one, and thus, from
(21) and (23), and must be unique for each .
Packets are generated at each with an average size of

. To know if a given input rate
at each is feasible, the throughput of each transmitter
must first be computed from (23) to derive . After computing

, the signs of the factors are checked. If ,
then is feasible and at least weakly stable; if , then is
also strongly stable.
From these tests we see that only , and
are required to determine feasibility. Both the steady-state

probabilities and the capacity region are completely agnostic
to the individual probability distributions of these parameters;
only the averages are relevant.

B. Network Response
Consider now the case where sources generate too much

traffic, such that the injected rate is known to be outside the
capacity region. In this case, some transmitters are not able to
forward all the generated traffic and their queues eventually

Fig. 6. The projection lines for each input rate . The complement re-
gion is divided into three subregions , and according to the
transmitters that are saturated in the projection of each subregion.

saturate. However, it is not clear at first which transmitters
saturate and which do not, since their individual capacities
are interdependent. In this section we show how the network
responds to an infeasible input rate.
For ease of exposition, assume that each cannot be

reduced, i.e., the network is either strongly stable or unstable.
In addition, let be the capacity region and its complement
in . Assume that each is known, and let be the cor-
responding input rate computed from (23). Let be the rate at
which the network operates, such that if , and

, with for at least a transmitter , otherwise. In
this case, the network can be viewed as a system and we call
the network response to the input rate .
When , at least one node must be saturated, and there-

fore the network response is a projection of onto the
border of the capacity region. As an example, consider again
the case of two transmitters within carrier-sense range showed
in Fig. 4(a). Fig. 6 shows the projection lines for each input
rate in . Clearly, there are three subregions in
whose projections are different. We define , with each

, as the subregion in whose projections result in
transmitter being saturated if .
At , any input is vertically projected down, and the

network response is for some . This
occurs because, when

(24)

transmitter cannot saturate. Its saturation line is outside the
capacity region, and thus can never inject enough traffic to
saturate without saturating itself first. The vertical gap
is the traffic that injects in excess. At , the projection is
horizontal to the left, and the response is for some

. Similarly, when

(25)

transmitter can never saturate. The horizontal gap
is the excess traffic injected by . Finally, for any input rate

, the projection is to the point where both nodes are
saturated, since in this case both and are injecting toomuch
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traffic. The gaps and are the excess traffic
injected by and , respectively.
The aforementioned procedure can be generalized to find the

response of any wireless CSMA/CA network. For any input rate
, the response can be graphically determined

solely from the location of . In particular, for a network with
nodes, if , then any transmitter with

must be saturated in the projection . However, this method
requires knowledge of the subregions in , each with a
different projection pattern. This makes it hard to use a graphical
solution in general. Therefore, inspired by [13], we show that
the network response can be efficiently computed from the
solution of a convex optimization problem.
Given an input rate , consider the following optimization

problem over the -dimensional variable

(26)

The log-sum-exp function is convex in and thus
is concave in for each . Since (26) is an upper-bounded
concave maximization, an optimal is attainable. From

(27)

we see that , and the maximization in (26) is over
the logarithmic transform of . The con-
straint forces the solution to be within the capacity
region under strong stability.
A maximizing sequence where

as is given from (27) by the gradient algorithm

(28)

where is a small step size and is a projection onto the
feasible set . The
algorithm converges when , for some small

. For any input rate , the optimal solution is unique
and generates the network response , as shown in the following
theorem. The proof is in the Appendix.
Theorem 3: The optimal is unique

and generates the network response to any input rate .
As a corollary, the optimization in (26) can also be used as

a simple test to determine if a given input rate is feasible.
In this case, let be the network response generated by . If

, then ; otherwise, with for at
least one transmitter , and thus .
Under weak stability, the feasible set is

unconstrained. In this case, from in (27),
is attainable only if .

VII. SIMULATIONS

We use a discrete event simulator in MATLAB to demon-
strate our theoretical results. In Section VII-A we focus on the
throughput modeling results, and in Section VII-B we show re-
sults on the capacity region and network response.

Fig. 7. The MIT Roofnet topology used in our simulations, composed of
70 nodes and 35 links. The interference range is set to 500 meters. Wireless
links are represented by arrows and interference is represented by gray lines.

In the simulations, each node implements the CSMA/CA pro-
tocol described in Section II, and freezes its backoff counter
during any transmission within this range. The backoff interval
of each transmitter is uniformly sampled from 25 to 50 s.
Packets are generated at each node with a uniform interarrival
time and with a uniform size varying from 1000 to 1500 bytes.
For simplicity, the bit rates and the delivery ratios of all links are
fixed at 1 Mbps and 90%, respectively. Simulations using dif-
ferent probability distributions, but the same average, for these
parameters provided identical results.
As predicted, convergence between theoretical and simu-

lation results always occurs, and the relative error between
the two can be consistently reduced by increasing the simula-
tion time. Our simulations ran until the average relative error

became lower than 1%, where and
are the fraction of time a node transmits in the simulation

and in the proposed theoretical model, respectively.

A. Throughput Modeling

Fig. 7 shows the MIT Roofnet topology used in the sim-
ulations. The topology is composed of 70 nodes arranged in
35 links spread over an area of roughly 2.5 km . Wireless links
are shown using dark arrows and interfering transmitters are
connected by gray lines. With a carrier-sense range of 500 me-
ters, there are 5744 link sets in this topology. To ensure that the
input rate is feasible, we select some and set
for each transmitter . Its average interarrival time is
then computed from (21), and used in the simulation to generate
packets at each transmitter using a uniform distribution.
Fig. 8(a)–(d) shows the normalized throughput of each

link in the network for different values of . Simulation re-
sults are shown using vertical bars, and theoretical results are
shown using square dots. From these figures, a perfect agree-
ment is seen between the theoretical and simulation results. In
addition, the unfairness of the CSMA/CA protocol is also evi-
dent. In Fig. 8(a), all sources are closer to saturation and the un-
fairness is higher, with a few flows achieving high throughput
while others starve. This occurs because a saturated network
stays, most of the time, in states with the maximum number of
active links, i.e., the maximum independent sets [2], [6], [8].
This can be seen from (6); since in practice every is large, the
probability of a maximum independent set is significantly
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Fig. 8. The normalized throughput of each link in the network under different traffic loads. For each graph, the factor of all transmitters is
set to the same value. The vertical bars represent the simulation results and the square dots represent the theoretical results from Section III. (a) , (b)

, (c) , and (d) .

higher than the probability of a non-maximum set . As a
result, it is reasonable to assume and to approximate
the flow throughputs using only the probabilities of the max-
imum sets [2]. In our topology, the maximum independent sets
are composed of seven links and there are only three of these
sets, each with a high probability of approximately 27%. Flows
1, 2, 6, 13, 16, and 23 are active in all of the three maximum sets,
achieving a throughput higher than 80% in Fig. 8(a). Flows 9,
10, and 11 appear once in each set, achieving roughly 33%.
The maximum independent set approximation works well for

networks close to saturation. For unsaturated networks, how-
ever, this approximation is not valid. As decreases to 0.25,
0.05, and 0.01 in Figs. 8(b)–(d), respectively, the aforemen-
tioned flows become less dominant, resulting inmore time avail-
able for other flows to transmit. The probability of a non-
maximum set thus becomes non-negligible, and (11) must
be used to accurately compute the steady-state probabilities and
the throughput of each flow.

B. Capacity Region and Network Response

For ease of exposition, we provide capacity and network
response results using the case of Fig. 5(a), i.e., transmitter is
within range of both and , but and cannot hear each
other. We vary the injected input rate over the
space to compute the average interarrival times
from (23), assuming , and measure the corresponding
network response from simulation. The default
parameters are changed to make the three subregions

, and visible. In this case, transmitters have an average
backoff interval of 50 s and an average transmission time of

s and s.
Fig. 9 shows the network capacity and the projection lines

for this network. The ‘x’ dots represent the injected input rate
and the ‘o’ dots represent the corresponding network re-

sponse . The lines connecting each input to its response
form the projection lines. The area shown in gray is the

strongly stable capacity region computed from (19) and (20).
Within the capacity region, we see that the network is able to
fully sustain the input rate and transmit all injected traffic, with

. Outside the capacity region, however, the input rate
is not sustainable and it is thus projected onto the border

of the capacity region, with and for at least
one transmitter . From the projection lines, a pattern sim-
ilar to the one in Fig. 6 is also seen here. In particular, for

any , the
saturation line of transmitter is outside the capacity region
and thus it cannot saturate. Any input rate must
then be vertically projected down. In a similar fashion, for any

, the
saturation line of transmitters and is outside the capacity
region, and thus they cannot saturate. Any input rate is
then horizontally projected to the left. Finally, as expected, any
input rate is projected to the saturation point ,
since in this case all transmitters are injecting too much traffic
into the network.

VIII. RELATED WORK

Following the classification in [4], models for wireless net-
works can be classified into node-centric or set-centric.
1) Node-centric models: In this approach, the throughput of

each node is expressed as a function of the throughput of its in-
terfering neighbors. Using these expressions, a system of equa-
tions is built and solved to find the individual throughputs.
Ng and Liew [11] propose a node-centric approach to model

the throughput of a single multihop flow. The condition to de-
termine if the flow throughput is limited by hidden nodes or by
carrier sensing is provided. Gao et al. [10] introduce a node-cen-
tric methodology to compute the capacity of several multihop
flows. The authors assume that every transmitter is saturated,
and compute the flow capacity as the minimum link capacity
in the path. Medepalli and Tobagi [14] provide an alternative
model based on the computation of the estimated service time
of a packet once it reaches the head of the transmission queue.
Jindal and Psounis [15] characterize the rate region of 802.11
multihop networks using a decompose-and-combine approach.
Node-centric approaches try to model the performance of

each node individually without a global view of the network.
The main difficulty in this case is to compute the fraction of
time that transmissions overlap. To address this issue, a few sim-
plifying assumptions, such as independence among transmit-
ters [14] and pairwise interference [10], [15], must be made, or
techniques, such as the inclusion-exclusion principle [10], [15],
have to be employed. The resulting models, however, become
rather complex and provide limited insight into the operation of
CSMA/CA networks.
2) Set-centric models: In set-centric approaches, the global

network behavior is modeled using the independent link sets.
This method results in closed-form analytical solutions which
provide a better understanding of the CSMA/CA operation.
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Fig. 9. The capacity region and network response of the
topology. The ‘x’ dots represent the input rate and the ‘o’ dots represent the
corresponding network response (connected with a line to ).

In a seminal work, Boorstyn et al. [5] model a wireless
CSMA network as a continuous-time Markov process whose
states are the independent link sets. For saturated queues with
exponentially distributed medium access attempts, the authors
prove that the steady-state probabilities have a product-form
solution. Brazio [7] generalizes this result and shows that
the product-form solution holds for a wider class of MAC
protocols as long as the hearing matrix is symmetric. Wang
and Kar [6], as well as Durvy et al. [8], use the same model
to study the fairness problem in CSMA networks under satu-
ration conditions. The authors show that unfairness is mainly
caused by topology inequalities, with nodes at the network
border being significantly favored. Garetto et al. [4] propose a
node-centric model for 802.11 which employs the results in [5]
to derive the time that each node counts down. Nardelli and
Knightly [9] extend this model further to address collisions and
hidden terminals in 802.11 networks, providing closed-form
expressions to compute the network throughput.
The aforementioned works assume exponentially distributed

backoff intervals. Recently, Liew et al. [2] proved that the
product-form solution holds for any backoff distribution. Van
de Ven et al. [3] present the same insensitivity result and
the stability condition for two unsaturated topologies. Kai
and Zhang [16] independently derive a model similar to ours
(Section III) to approximate unsaturated networks. Different
than previous work, however, we do not assume saturated
sources [2], [4]–[11], exponential distributions [3]–[9], specific
topologies [3], or approximations [16]. As a result, our model
is more general and applies to arbitrary CSMA/CA networks.
Nonetheless, for the steady-state solution in (11) to be exact,
we do require that the arrival process at each node freezes
during neighbor transmissions. If the arrival process is not
frozen, (11) can still be a good approximation under certain
conditions. This is notably the case when the input rate
is relatively far from the boundary, i.e., the time that a node is
frozen is much shorter than its average interarrival time.
3) Bounds and capacity: Significant research is also dedi-

cated to derive asymptotic bounds for wireless multihop net-
works. In a seminal work, Gupta and Kumar [17] show that, in
a network of nodes, each communicating with another ran-
domly selected node, the per-node throughput is upper bounded
by . Toumpis and Goldsmith [18], Jain et al. [19], and

Kodialam and Nandagopal [20] use a convex combination of
the capacities of the feasible link sets to derive network capacity
bounds. These works, however, assume a TDMA network with
an optimal centralized scheduler and do not directly apply to
CSMA networks. One exception is provided by Chau et al. [21],
who show that the same per-node throughput upper bound of

can also be achieved by CSMA networks. Recently,
Jiang and Walrand [13] propose that nodes adjust their backoffs
based on queue lengths, and prove that this scheme achieves the
network capacity. In a similar fashion, we show that TDMA is
a particular case of CSMA/CA when . Therefore, both
networks must have the same capacity, although this is only true
in the ideal case where backoff intervals are infinitesimal.
To the best of our knowledge, a full characterization of the

capacity region of wireless CSMA/CA networks is still missing,
and we believe that the equations introduced in this work are the
first attempt to do so.

IX. CONCLUSION

In this paper, we introduced a theory that is able to not only
predict the behavior of wireless CSMA/CA networks, but also
fully characterize their capacity region using analytical expres-
sions. As a result, fundamental tradeoffs between the input rates
of the various traffic sources can now be analyzed. Our theory
has no restrictions on the node placement and can be applied
to any CSMA/CA network, providing support for unsaturated
sources and arbitrary probability distributions for the packet
size, backoff, and interarrival times. We show that the capacity
region is entirely agnostic to the distributions of these param-
eters, depending only on their average values. The proposed
theory respects the interference constraints among nodes and
incorporates the buffer dynamics of unsaturated sources. The
theory also extends naturally to TDMA networks, shown to be
a particular case of CSMA/CA when backoff intervals are infin-
itesimal. Finally, feasibility tests and a convex optimization that
efficiently determines the network response to infeasible input
rates are also introduced.

APPENDIX
PROOFS

Theorem 1: By freezing the arrival process, the probability
that a link set is active in an unsaturated network is

Proof: We first derive the forward Kolmogorov equation
for an unsaturated wireless CSMA/CA network. For this pur-
pose, the network state is supplemented with three extra vari-
ables, such that the resulting stochastic process becomes Mar-
kovian. Let be a vector containing the re-
maining time until the next arrival of each transmitter. Simi-
larly, let contain the remaining time until
each node finishes its current backoff or transmission, and let

contain the number of packets in the queue
of each transmitter. A binary vector is used
to represent each feasible link set, such that if the th
node transmits in this set and otherwise. The network
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state at time is then a tuple , which summa-
rizes the history of the entire process, i.e., given , the future
behavior is independent of the past. We set out to find how the
probability density , that at time the network is at
state , evolves over time.
First, additional notation is introduced. For a vector , let

be the set of transmitting nodes, be the set of
nodes allowed to reduce their backoff counters, and
be the set of frozen nodes. We define as a
binary vector representing the unfrozen nodes in the set
, i.e., if and otherwise. Let

be the set of nodes that
are either actively counting down or transmitting in network
state . The vector is a binary vector that
represents this relation, such that if both
and , and otherwise. At network state , let

be the set of nodes at which an arrival results in the queue
vector , i.e., if , then an arrival may occur at this
node, changing the queue state from to , where is
a unit vector with the th entry equal to 1 and all others equal
to 0. Arrivals at a node cannot occur because
either or the queue vector is infeasible at .
Finally, we define both
and as the vectors
and with their th entry equal to 0, respectively.
Without loss of generality, each node samples a new backoff

interval after a transmission regardless of its queue state; how-
ever, the node only counts down when its queue is nonempty.
For simplicity, transmissions are assumed to be correctly re-
ceived (the case with transmission errors is similar).
Let the functions , and be the prob-

ability densities of the interarrival, backoff, and transmission
times of , respectively. Then, for a small enough interval
and for a valid state , the motion of the process is gov-
erned by the Chapman–Kolmogorov equation

(29)
Assuming that at most one event occurs in the time interval

and the network state is
at time , then only a few states are possible. The
first term on the right-hand side (RHS) of (29) is the case where
no events occur in , and thus the counters just decrease
by . The vector enforces that only unfrozen nodes de-
crease the arrival counters and enforces that only unfrozen
nodes with a nonempty queue decrease their backoff/transmis-
sion counters. The other terms represent the cases where an
event occurs in . The second term in the RHS of (29)
is for the events where an arrival occurs at a node ,
changing the queue vector from to ; the third term is

for the events where a node finishes its backoff period
and starts a transmission; and the final term is for the events
where a node finishes its transmission and then sam-
ples the backoff interval of the next packet, even if after
the transmission.
Expanding the first term on the RHS of (29) results in

(30)
where . By substituting (30) back
into (29), subtracting from both sides, dividing by

, and taking the limit as , we obtain the forward
Kolmogorov equation for wireless CSMA/CA networks as

(31)

In steady state, convergence occurs and .
Defining and assuming that
the limit exists, the global balance equation is then

(32)

In order to find the steady-state probability , the first
step is to marginalize out of the density . Let

be the
set of feasible queue vectors when the link set is active.
Summing (32) over all feasible queue vectors and
interchanging the order of the summations results in

(33)
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Let be the density with
marginalized out, and be
the density with , for . Then, (33) is written as

(34)

Noting that

(35)

and integrating (34) for results in the simpler equation

(36)

where and .
By realizing that ,

we claim that, for any , the conditional probability
.

Given that the active link set is and , the first equality
holds from the definition of , and the second equality
holds because, by freezing the arrival process, the node state

becomes independent of the state of other nodes.
In fact, when the node is unfrozen, the state
evolves as if there was nobody else in the network. If we now
define as the density of the
residual backoff time of node and as the
conditional probability of the queue of node being nonempty
given that is active, then

(37)

where ,
and are all independent from the particular set ,
given that . In this case, the density is then

(38)

Finally, by defining as

(39)

the solution to (36) and (38) is

(40)

where is the residual transmission
time of node . In fact, the terms of the left-hand and right-hand
sides of (36) match on a one-to-one basis under this density.
Integrating for , we have .

Theorem 2: There is a one-to-one correspondence between a
feasible throughput vector and via , i.e., .

Proof: This proof is derived in two steps. First, we prove
the one-to-one correspondence between and , i.e., ,
and later we do the same for and , i.e., .

: For the purpose of contradiction, let and be two
different distributions in the form of (11) that generate the same
per-node throughput, i.e., . In addition, define
the variables and such that and

can be expressed from (11) as

(41)

The Kullback-Leibler (KL) divergence is a measure of dif-
ference between two distributions and . In our case, it is
defined as . This measure is
not necessarily symmetric, i.e., , but
it is always non-negative and it is zero if and only if .
From (41), is computed as

(42)

From the assumption that , the
reverse measure can be similarly computed as

(43)

and thus . Since the KL divergence
is non-negative, then . As a re-
sult, both distributions and must be equal, which contra-
dicts our initial assumption that . Each feasible is then
generated by a unique distribution and, since each distribution
cannot generate more than one vector , there is a one-to-one

correspondence between and .
: Let and be two non-negative vectors that gen-

erate the steady-state solutions and , respectively. For the
purpose of contradiction, assume that but . If



LAUFER AND KLEINROCK: THE CAPACITY OF WIRELESS CSMA/CA NETWORKS 1531

both solutions are identical, then and thus the two nor-
malizing constants must also
be equal. Now consider the sets where only a single
transmitter is active. Since and the normalizing con-
stants are equal, then for and thus

, which contradicts the assumption that . As a re-
sult, there is a unique vector capable of generating . Since
each vector cannot generate more than one solution , there
is a one-to-one correspondence between and .
Therefore, and, from transitivity, there is a

one-to-one correspondence between and , i.e., .

Theorem 3: The optimal is unique
and generates the network response to any input rate .

Proof: First, we prove that
is strictly convex. From the strict concavity of the logarithmic
function, we know that for any positive
and , with , and . Let and be two

different distributions in the form of (41) generated by and ,
respectively. Then, for at least one link set , we have
and thus . For other link
sets, the inequality does not need to be strict. Summing over all
sets, . From (41),

(44)

From Theorem 2, we know that, since , then .
Therefore, taking the logarithm for both sides of (44) results in

for any and
. By definition, function is then strictly convex

and is strictly concave in . As a result,
the optimal is unique.
Let be the normalized throughput generated by , i.e.,

for (45)

From the monotonicity of the logarithmic function and from
Theorem 2, is a one-to-one correspondence,
and therefore is also unique.
We now prove that is the network response . First, Slater's

condition is always satisfied, since the feasible set only has
linear inequalities and is never empty, resulting in zero duality
gap. The optimal must then satisfy
the Karush–Kuhn–Tucker (KKT) conditions

(46a)
(46b)
(46c)

for . The network response satisfies all con-
ditions in (46). Conditions (46a) and (46b) are satisfied by any
vector in and, since , we focus only on the comple-
mentary slackness condition in (46c). If at input rate the net-
work response of is , then must be saturated, i.e.,

; otherwise, if is not saturated, i.e., ,
then it must sustain the input rate . In both cases, (46c)
is satisfied. Since is unique and also satisfies the KKT con-
ditions in (46), then .
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