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A QUEUE WITH STARTER AND A QUEUE WITH VACATIONS: 
DELAY ANALYSIS BY DECOMPOSITION 

HANOCH LEVY 
AT&T Bell Laboratories, Holmdel, New Jersey 

LEONARD KLEINROCK 
University of California, Los Angeles, California 

(Received April 1983; revisions received January 1984, November 1984; accepted July 1985) 

This paper analyzes both a queueing system that incurs a start-up delay whenever an idle period ends and one in which 
the server takes vacation periods. We show that the delay distribution in the queue with starter is composed of the direct 
sum of two independent variables: 1) the delay in the equivalent queue without starter, and 2) the additional delay 
suffered due to the starter's presence. Using this decomposition property, we easily derive the distribution of the delay 
suffered in the system with starter. This analysis is done for systems (both discrete and continuous time) whose interarrival 
times possess the memoryless property. Using this approach, we then analyze the M/G/1 system with vacation periods. 
First, we show that the M/G/1 with vacations can be considered as a special case of the M/G/1 with starter, so that the 
delay in the M/G/1 with vacations can be easily found by using the formula for the delay of the M/G/1 with starter. 
Second, using geometric arguments, we explain why the additional delay in the vacation system is distributed as the 
residual life of the vacation period. 

W e consider a first-come-first-served queueing 
system with a "starter." In such a system, the 

server is "turned off" whenever it becomes idle. When 
a customer arrives at an idle system, he cannot be 
served immediately; rather the system requires an 
additional (random) amount of time to start from 
"cold" before it can serve the new "first" customer. 
Customers who arrive to a "hot" system (i.e., one with 
at least one customer either in service or in the queue) 
will join the queue and be served in turn as in a simple 
queueing system. 

The model for a queueing system with special con- 
siderations when the server becomes idle is not new. 
Miller (1964) analyzed a system whose server goes on 
a vacation (a "rest period") of random length when- 
ever it becomes idle. Miller also considered a system 
whose server behaves normally but in which the first 
customer arriving at an empty system has a special 
service time. Scholl (1976) and Scholl and Kleinrock 
(1983) analyzed the "server with rest periods" using 
another approach. Scholl considered as a special case 
for rest periods, a queueing system with a starter (or 
"a system with initial set-up time"). Both papers ana- 
lyze M/G/I1 queues. These types of systems and sim- 
ilar ones were also reported by Avi-Itzhak, Maxwell 
and Miller (1965), Cooper (1970), Heyman (1977), 
Lemoine (1975), Levy and Yechiali (1975), Pakes 

(1973), Shanthikumar (1980), Van Der Duyn 
Schouten (1978), and Welsh (1964). 

The need for studying a queue with starter for slotted 
(i.e., discrete time) systems, and the fact that previous 
studies analyzed only M/G/1 (i.e., continuous time) 
systems, motivated us to again study the queue with 
starter. The emphasis in this paper is on developing a 
novel approach to studying this system. This approach 
will compare the delay suffered by a customer in a 
usual queueing system with the delay in a system with 
starter. Instead of deriving the delay in the queue with 
starter directly, we find the additional delay suffered 
due to the presence of the starter. Moreover, we show 
that the additional delay in the system with starter is 
independent of the delay in the system without starter. 
Using this independence property, it is then easy to 
calculate the total delay in the system with starter: it 
is simply the direct sum of the delay in the queue 
without starter plus the additional delay calculated 
above. 

This approach is very powerful in analyzing systems 
similar to the queue with starter. Levy (1984), using 
the same approach, analyzes a queueing system with 
starter where the length of the start-up period depends 
on the arrival process (unlike the system analyzed 
here, where the start-up time is independent of the 
arrival process). Levy also uses the results reported in 
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this paper to derive the delay in an exhaustive ALOHA 
system. The fact that the delay in the queue with 
starter can be calculated as the (independent) sum of 
two independent random variables makes the analysis 
of these systems relatively simple. 

As stated above, in contrast to previous studies that 
analyzed M/G/I1 systems, the emphasis in this paper 
is on studying slotted systems with memoryless arrival 
streams. In Section 2, we analyze the delay in a slotted 
queue with starter. In this analysis we derive the 
z-transform of the delay in this system. For the sake 
of completeness, we use our approach to rederive the 
delay in an MIGI 1 queue with starter and find agree- 
ment with Scholl's results. in Section 3, we study a 
system with vacation periods. First, we show that a 
system with vacation periods can be considered as a 
special case of the queue with starter. The delay in 
this system can thus be easily found from the delay of 
the queue with starter. We then show that the delay 
of an M/G/ 1 with vacation periods is exactly the sum 
of two independent random variables: 

* the delay in an MIGI 1 without vacation periods; 
* an additional delay distributed as the residual life of 

the vacation period. 

Lastly, we mention that some of this work (as first 
reported in Levy and Kleinrock 1983) has been de- 
veloped, in parallel, in two independent studies. In 
the first, Fuhrmann (1983, 1984) showed that the 
delay in the queue with vacation periods consists of 
the sum of two independent random variables: 

* the delay in an MIGI1 without vacation periods; 
* an additional delay distributed as the residual life of 

the vacation period. 

Fuhrmann's (1983, 1984) result is identical to ours in 
Subsection 3.2. Nevertheless, his method of proving 
this property is rather different from ours. In the 
second, parallel paper, Doshi (1983) addresses the 
decomposition property in both the queue with starter 
and the queue with vacations. The model he uses is a 
continuous time model of a GI/GI1 queue. His em- 
phasis is on studying the queue with vacation periods, 
while the queue with starter is considered as a special 
case of the queue with vacation periods. In addition, 
Gelenbe and Iasnogorodski (1980) have established 
the decomposition property for the GI/G/1 system 
with vacation periods. 

1. Notation, Definitions and System Description 

In this paper, we analyze our queueing system by 
means of the unfinished work in the system. We 

define: 

U(t) A unfinished work in the system at time t; 
A remaining time required to empty the system 

of all customers present at time t. 

We use the usual notation: 

Cn the nth customer. 

-r n arrival time of Cn. 

tn -rn - Tn-I 

- interarrival time between Cn-1 and Cn. 

xn= service time of Cn. 

In Figure la we plot the behavior of U(t) versus t 
in a simple queueing system. This system will be called 
system-A. As described in Kleinrock (1975), U(t) can 
be viewed as the virtual waiting time, i.e., if the service 
policy is first-come-first-served, the waiting time of 
customer Ci is U(ri) (all the work residing in queue 
when Ci arrives). We also use the terms "busy period" 
and "idle period" to represent durations in which the 
server is continuously busy or idle (respectively). We 
denote the busy period durations by Y1, Y2, Y3, *-- 

and the idle period durations by Xl, X2, X3, .... Note 
that C,, C4 and C5 initiate busy periods. 

U(t) 

Tl1 T2 T3 T4 TS T6 T7 

|< Y, Xi Y3 | X3 
Y2 X2 

(a) System-A, a system without starter 

U(t) 

T T 
DI I\I2\ 

T1 T2 T3 T4 T5 T6 T7 

(b) System-B, a system with starter 

Figure 1. The unfinished work in the system (with 
and without starter). 
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We now switch to the queue-with-starter system and 
call it system-B. In order to analyze the queue-with- 
starter system, we construct system-B from system-A 
for each sample path by using the same arrival times 
and service times, and by adding the start-up delays 
(note that, logically, one could view this approach as 
constructing system-A from system-B by removing 
the start-up delays). This construction makes the sets 
of arrival instants ({rij) and service times ({xi}) iden- 
tical in both systems. In Figure lb we plot U(t) versus 
t in system-B. In this figure, the dashed line represents 
system-A and the solid line, system-B. The difference 
(denoted by D) represents the additional delay suf- 
fered in system-B. 

In Figure lb we note that customer C, arrives to an 
empty system and thus suffers an additional delay DI 
due to an independently selected cold start. Note that 
C2 and C3 suffer exactly the same additional delay. 
When C4 arrives, he finds the system idle, and suffers 
the additional delay of a second independently se- 
lected cold start (D2), which is not necessarily identical 
in length to DI. However, we observe another behavior 
when C5 arrives. Since D2 > X2, C5 finds the system 
busy, and a cold start is not required. Nevertheless, C5 
is still subjected to an additional delay, D2- X2. Again, 
we note that C6 and C7 suffer the same additional 
delay as C5. 

Keeping this in mind, we now turn to the analysis 
of system-B. 

2. The Analysis of System-B, a Queue 
with Starter 

As mentioned previously, this analysis will compare 
the behavior of systems A and B under the same 
arrival pattern. 

In addition to the notation presented in Section 1, 
we define: 

Si = length of a cold start (if any) corresponding to 
the ith busy period. 

Di = actual additional delay suffered by the first cus- 
tomer of the ith busy period. 

For convenience of notation, Si is defined for every i. 
For a busy period i that suffers a cold start, Si repre- 
sents the length of the cold start. For other busy 
periods, Si is a dummy variable that is not used in the 
analysis. 

The reader should note that, even though we deal 
with system-B, we still consider busy and idle periods 
according to their appearance in system-A. This ad- 
ditional notation relates to busy (idle) periods as 
viewed in system-A, e.g., the ith busy period is the ith 
busy period in system-A. 

2.1. The Basic Properties of the System 

The following assumptions are required for the general 
analysis. 

1. The length of an interarrival time ti is indepen- 
dent of the length of any other interarrival time 
tj(i $ j). The service time xi of an arbitrary cus- 
tomer is independent of the service time xj of any 
other customer (i $ j). Service times are independ- 
ent of interarrival times, so xi is independent of tj 
for all i and j. 

2. The length Si of a cold start is independent of the 
length Sj of any other cold start (for any i $ j). 

3. The length Si of a cold start is independent of both 
the sequence It,J and the sequence Ixn. 

The first assumption is very common for most 
queueing systems. The second and third assumptions 
simply state that the length of a cold start is chosen 
independently of system-A and of the length of other 
cold starts. 

Next, we show how to calculate the additional delay 
suffered by the first customer of busy period i. The 
additional delay suffered by this first customer can be 
calculated recursively from the following equation: 

D= Si (la) 

D~JDi 
Xi If Di - Xi (lb) 

Si1 if Di< Xi. 

The basis of the recursion DI is clearly the first cold 
start of the system. The first line in the recursion (1 b) 
represents the case in which the first customer of busy 
period i (from system-A) finds system-B busy, while 
the second line represents the case in which this cus- 
tomer finds system-B idle, and his additional delay is 
due to an independent cold start. In the following 
subsections, we will use this recursion to calculate the 
limiting distribution of Di. 

While the additional delay suffered by a "first cus- 
tomer" is an important measure, our main interest is 
the additional delay suffered by an arbitrary customer. 
In the following development, we show that the dis- 
tributions of these two delays are identical. 

Theorem 1. If customers Ci and Cj belong to the same 
busy period in system-A, they suffer exactly the same 
additional delay in system-B. 

Proof. Let UA(t) be the unfinished work in system- 
A and UB(t) be the unfinished work in system-B. 
Without loss of generality, let us assume that j > i. If 
j = i + 1 (Cj is the next customer arriving after C1), 
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then we have 

UA(rj) = UA(ri) - - ri) + Xj, 

UB(Tj) = UB(Ti) - (Tj --r) + Xj, 

from which the claim follows. By a simple induction, 
the claim can be proved for arbitrary j 5 i + 1. 

Theorem 2. Di is independent of Xi for every i. 

Proof. It is clear that Di is a function only of X,, X2, 
. . . Xi-, and of S,, S2, . . . Si. Due to the memoryless 
property of the arrival process, Xi is independent of 
all these variables and thus it is also independent 
of Di. 

The following theorem states that the additional 
delay a customer suffers in the system with starter is 
actually independent of the delay he suffers in the 
system without starter. 

Theorem 3. Given that a customer is served in busy 
periodj, the additional delay suffered by this customer 
in system-B is statistically independent of the delay he 
would suffer in the equivalent system-A. 

Proof. Let Ci be an arbitrary customer served in busy 
period j and let Ck (k - i) be the first customer served 
in this busy period. From Theorem 1, the additional 
delay suffered in system-B by Ci and Ck is the same. 
Thus, we must show that the additional delay suffered 
by Ck in system-B is independent of the delay Ci suffers 
in system-A. It is clear that the delay suffered by Ci is 
a function of only the interarrival times and the service 
times that "belong" to busy periodj, namely, the series 
tk+I, tk+2, . . . ti and the series Xk, Xk+i, . .. xi. On the 
other hand, the additional delay suffered by Ck is a 
function of only the system behavior prior to -k (the 
starting time of busy period j). Specifically, this delay 
is a function only of the sequence t2, t3, . . . tk, the 
sequence xi, x2, . .. xk-I and the sequence S,, S2, . . . 

Sj. Now, because the group of variables on which the 
delay (in system-A) depends and the group of variables 
on which the additional delay depends are mutually 
exclusive, and because of assumptions 1 and 3, these 
groups are statistically independent of each other. 
Thus, the additional delay suffered in system-B is 
independent of the delay suffered in system-A. 

This theorem directly implies (see Doshi for details) 
that in equilibrium the additional delay suffered by an 
arbitrary customer in system-B is independent of the 
delay he would suffer in system-A. 

This result now allows us to study in three steps 
the total delay suffered in the system with starter: 
1) Derive the delay suffered in the system without 

starter. 2) Derive the additional delay suffered in the 
system with starter. 3) Convolve the distributions of 
the two delays to yield the total delay in the system 
with starter. 

The next theorem states that the additional delay 
suffered in system-B by the customers of a given busy 
period (according to system-A) is independent of the 
number of customers served in this busy period. 

Theorem 4. Di is independent of the number of 
customers served in busy period i. 

We omit the proof, due to its similarity to the proof 
of Theorem 3. 

The following corollary is a direct result of Theo- 
rems 1 and 4. 

Corollary 5. The limiting distribution of the ad- 
ditional delay suffered by an arbitrary customer in 
system-B is identical to the limiting distribution of Di. 

2.2 Discrete System with General Memoryless 
Arrivals 

This section considers a discrete time model in which 
time is indexed by fixed length slots. The arrival 
process can be described as a renewal process, which 
means that the number of arrivals in slot i is inde- 
pendent of the number of arrivals in slot j for any 
i $j. Arrivals in slot i are not considered to be "in" 
the system until the end of slot i. The number of 
arrivals in a given slot is taken from a general distri- 
bution, and the service time is general. 

In this section we are interested in the limiting 
behavior of Di as i approaches infinity. We recall that 
time is measured in units of the fixed slot length and 
define: 

co 

dJi' - Pr[Dj= i], Dj(z) _ E dJiz', di - imdi, 
i=O j 

D(z)-E dz', D_A E id, 
i=O i=O 

xJiAPr[Xj=i], Xj(z)A EJ XjZi, Xi a limxji, 
i=O , 

X(z)_ EXiZi, X_Eixi, 
i=O i=O 

si APr[Sj = i], Sj(z)-E sizi, S= lim si, 
i=O joo 

S(z) f sizi, S_ A, isi, 
i.O i=O 

ai - Pr[i arrivals in a given slot]. 
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In addition, SM')(z) and S(2)(z), will denote, respec- 
tively, the first and second derivatives of S(z), and 
D(')(z) will denote the first derivative of D(z). 

With these assumptions, it is clear that the random 
variables Xj, representing the lengths of the idle pe- 
riods, are independent and identically distributed. 
Thus, the limiting distribution of Xj is identical to the 
distribution of Xj. Since the number of arrivals in any 
slot is independent from slot to slot, Xj is geometrically 
distributed (shifted by a slot) with parameter ao (the 
probability of no arrival). For the sake of simplicity, 
let us use x = ao; thus Xj is distributed as follows: 

Xi-=x'i= Pr[Xj =i] = (I1-x) * xi-l 

i= 1,2,3.... (2) 

Similar arguments show that the limiting distribu- 
tion of the length of a cold-start is identical to the 
distribution itself, so si = s'. 

In the following, we solve for D(z). From Equations 
la and lb we obtain: 

dj'=Pr[Dj -Xj =i I Dj _> Xj] *Pr[Dj Xj] 

+ Pr[Sj+l = i I Dj < Xj] Pr[Dj < Xj] 

i=0, 1,2,.... (3) 

Using the independence property between Dj and Xj 
(Theorem 2) and the independence between Sj+, and 
both Dj and Xj, and using the fact that x'i = xi and 

si = si, we compute dJ+': 
00 00 X0 

dij = E Xkdk+i + SI E djk E XI 
k=1 k=O I=k+l 

i=0, 1,2,.... (4) 

From (4), we compute the z-transform of D: 
00 

Dj+1 (z)-E dji+I zi 
i=o 

~~~~ ~~~~~~ ~~(5) 
=EZi[ E Xk dk+i + Si E djk E XI] 
i=O Lk= 1 k=O l=k+ I1 

Substituting (2) into (5), and further manipulation, 
yields 

Dj+1(z) - (1 - x)[Dj(x) - Dj(z)] + S(z)Dj(x). (6) 

Computing D(z) by taking limits on j gives 

D(z) = D(x)[I - x + S(z)(x - z) (7) 

At z = 1, we note that D(1) = 1, S(1) = 1, 
S(')(1) = ; using these results and L'H6pital's rule, 

we obtain 

D(x) = 1 (8) 
D(x)=1 + (-x)3 

* 

Substituting (8) into (7) gives us the important result: 

D(Z)= 1 
+1X)N[ 

- -Z (9) 

Equation 9 relates the z-transform of the addi- 
tional delay of an arbitrary customer to the probability 
of no arrival (x), the z-transform of a cold start (S(z)) 
and the expected length of a cold start (S). To calculate 
the z-transform of the actual delay suffered in the 
queue with starter, one must calculate the z-transform 
of the delay in the equivalent queue without starter, 
and multiply it by D(z) (as given in (9)). This is true 
since the additional delay in the queue with starter is 
independent of the delay in the queue without starter 
(see Theorem 3). 

Given Equation 9, it is now easy to compute the 
expected additional delay. From the relationship 

- dD(z) 
dz z-1 

and using L'Hopital's rule, we obtain 

1D + (1- xS [2S - S(Z)()(x-1)] (10) 

Recalling that '(2)(1) 52-5, we find that 

_ 2S + (2 - )(I x) 
2 + 2S(1-x) (11) 

We note that the mean of the additional delay depends 
on the first and the second moments of the cold start 
and on the probability of at least one arrival (1 - x) 
in a slot. 

From Corollary 5, it is clear that (9) and (1 1) rep- 
resent the additional delay and its expected value for 
an arbitrary customer in the system. 

2.3. The Behavior of the Mean Additional Delay 
in the Discrete System 

The purpose of this section is to examine the behavior 
of expression (11) for the expected additional delay 
suffered due to the existence of the start-up delays. 

The behavior of (1 1) when arrivals are rare (1 - x 
approaches 0) is D S. In this situation the distance 
(in terms of time) between consecutive busy periods 
is very large, and almost every busy period suffers a 
cold start. Therefore, almost all customers will suffer 
a "cold start, so D S and D(z) S(z). 

When arrivals are common (1 -x 1), the length 
of idle periods is usually 1, and the expected value of 
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the additional delay is 

_ + S2 
2(1 + S) 

This expression may be validated by calculating the 
expected value of the additional delay in a system 
when the length of every idle period is exactly one slot 
(see Levy for details). 

From (11), we realize that D is monotonically in- 
creasing with S when S2 is held constant. Moreover, 
if instead we hold the squared coefficient of variation 
(C2 = (S2 - (3)2)/(3)2) fixed, and let S approach 
infinity, D will also approach infinity. 

While all the previous properties look intuitive, the 
following is very surprising: D is not necessarily 
smaller than S, i.e., the mean of the additional delay 
seen by a customer may be larger than the expected 
length of a cold start. Take, for example, the following 
cold start distribution: 

{ -k i=O 

Si = 1k i= k 

0 O otherwise. 

So, S = 1, S2 = k. According to (1 1), 

2+ (k-1)(1-x) 
2 + 2(1 - x) 

Clearly, if k> 3, thenD> 1; so D>S! 
Once this property is noted, it is easily explained. 

The reason is that a short cold start affects only a few 
busy periods (in this extreme case, exactly one) and, 
therefore, only a few customers, while long cold starts 
affect many busy periods; therefore, many customers 
may see a large additional delay. Thus, if you average 
over all customers, the mean of the additional delay 
may exceed the average length of a cold start. 

From this observation we realize that, even if we 
hold 3 fixed, D can approach infinity when the second 
moment of the cold start is large enough. This result 
is similar to the observation made about the mean 
delay suffered in an MIGI1 system (see, for example, 
Kleinrock); this delay increases linearly with the co- 
efficient of variation of the service time, so the delay 
may be unbounded even if p is kept fixed and under 
unity. A similar well-known observation (again, see 
Kleinrock) is that the mean waiting time in the 
MIGI1 system may exceed the mean busy period 
duration. 

We conclude that the additional delay may grow 
extremely large if either the expected value of the 

cold start or the second moment of the cold start is 
extremely large. 

2.4 The Eigenfunctions of the Discrete System 

In this section, we are interested in how the start-up 
delay distribution is transformed into the additional 
delay distribution. Mathematically, we may view 
Equation 9 as a transformation from S(z) to D(z) and 
express it as 

D(z) = T(S(z)), (12) 

where T is the transformation expressed by (9). 
We may now ask what the eigenfunction of this 

transformation is. The mathematical meaning of this 
eigenfunction is: find the solutions for the equation 
S(z) = T(S(z)). In other words, an eigenfunction of 
the system is an additional delay distribution (D(z)) 
that is identical to the cold start distribution (S(z)) 
causing it. 

To solve for the eigenfunctions of our system, let us 
use (9) in (12), giving 

Sf ) 1 [l - x + S(z)(x - z) 
S(z) = +(-)[(13) 

Solving (13) gives 

S(z)=- 1/(1 +S) (14) 

Inverting (14) yields 

S= i=O, 1,2, (15) 

Yes!-the memoryless geometric distribution strikes 
again in queueing theory! 

In conclusion, then, if the cold start is geometrically 
distributed, the distribution of the additional delay 
suffered by all customers is also geometrically distrib- 
uted with the same parameter. 

2.5. The M/G/1 System with Bulk Arrivals- 
a Continuous Model 

For the sake of completeness, we may essentially 
repeat the derivations made above for an M/G/I1 
system with bulk arrivals. The system is a first-come- 
first-served single-server system with exponential 
interarrival times (with parameter X) and arbitrary 
service times. Now the interarrival times are contin- 
uous, whereas previously they wpre discrete. As in 
the discrete case, the arrivals themselves may consist 
of bulks of arbitrary size. 

The basic notation is not changed: Xi, Si, Di have 
the same meaning as before, and Equation 1 still 
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holds. The probabilistic notation is the following: 

Di(t) A_ Pr[Di? t], di(t 
dDi(t) 

D*(s) a e-st d1(t) dt, 

Xi(t) 4 Pr[Xi S t], xi(t) A dt( ) ' 
rX~~~~d 

Xi*(s) f e-stxi(t) dt, 

Si(t) _- Pr[Si s, t], si(t) a i(t(), 
dt 

St(s) 4 e-stsi(t) dt. 

The limits of D*(s), Xi*(s) and S*(s) are denoted by 
D*(s), X*(s) and S*(s). 

Following the approach used above, it is easy to 
derive the Laplace-Stieltjes transform (LST) and the 
expected value of the additional delay (for a detailed 
derivation, see Levy): 

D*(s) 1 + S*(s)(s - X)] (16) 

2+XS2 D 2S + (17) 
2 + 2XN 

These expressions agree with Scholl's results, which 
he calculated using a different method. 

The eigenfunction of the system is 

S*(s) = S 1' (18) 

which is, as expected, the LST of the exponential 
distribution! 

3. An M/G/1 with Vacation (Rest) Periods 

Consider an M/G/1 system with unlimited storage. 
The arrival process is Poisson with arrival rate X, and 
the service order is first-come-first-served. When the 
server becomes idle, it goes on a vacation of random 
length V. If, upon returning from a vacation, it finds 
any positive number of customers in the queue, it 
begins serving them as a regular M/G/I1 system (until 
the next vacation). If, on the other hand, the server 
finds no customers in the queue, it takes another 
vacation. Vacations are identically distributed and 
independent of each other and of the arrival process 
or service times. 

The M/G/I1 system with vacation periods was first 
studied by Miller, who analyzed, in addition to other 
system properties, the delay in the system. This system 
and similar ones were reported and analyzed by 
Cooper, Gelenbe and Iasnogorodski, Heyman, Levy 
and Yechiali, Shanthikumar, and Van Der Duyn 
Schouten. Scholl, and Scholl and Kleinrock were the 
first to notice that the delay in an MIGI 1 system with 
vacations has the same distribution as a random vari- 
able that is the sum of the following two independent, 
random variables: 

* the time in system as if there were no vacation; plus 
* an additional delay distributed as the residual life of 

the vacation period. 

However, Scholl and Kleinrock emphasize that this is 
only an observation of the expression for the delay in 
the system with vacations. They were not able to 
show these properties directly (i.e., by analyzing the 
system). 

In this section, we show, in a direct way, that the 
additional delay in a system with vacations is inde- 
pendent of the delay in a system without vacations, 
and that it is distributed as the residual life of the 
vacation distribution. First, using the queue with 
starter, we calculate the additional delay directly and 
find it to be as observed by Scholl. Second, we make 
a simple, direct queueing analysis of the additional 
delay in the system with vacations and show that it is 
distributed as the residual life of the vacation. 

3.1. Solving a System-with-Vacations 
by a System-with-Starter 

Consider a customer Ck who arrives to the system 
with vacations (which we refer to as system-B) and 
who finds this system empty. Let system-A be the 
equivalent system without vacations and let j be the 
busy period (according to system-A) in which Ck is 
served. Upon arriving to system-B, Ck must wait until 
the server returns from vacation. Let us call this delay 
the return time and denote it by Rj. It is obvious that 
the return time (Rj) observed in the system with 
vacations plays a role similar to that played by the 
start-up delay in the system with starter. We now use 
this similarity to show that the system with vacations 
can be considered as a system with starter whose start- 
up times (Sj) are the return times (Rj). It is clear that, 
in contrast to the cold starts, the return times are not 
independent of all interarrival times. This is true since 
the return time depends on the arrival process (for 
example, the return time Rj depends on the arrival 
epoch Tk and therefore on the interarrival time tk). 

For this reason, every theorem from Section 2 must 
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be checked again to make sure that each still holds 
when cold starts are replaced by return times. Even 
though the return times are not independent of all 
interarrival times, the following still holds: 

Theorem 6. The return time Rj is independent of all 
future interarrival times (tk+1, tk+2, ...) and allfuture 
service times (Xk, Xk+l, * * *) 

This theorem can be proved using arguments similar 
to those used in the proof of Theorem 3. 

In addition to Theorem 6, we next show, for systems 
whose arrival process possesses the memoryless prop- 
erty, that the return time is also independent of the 
system history. 

Theorem 7. Let to be the moment at which system-B 
becomes idle and the server begins taking vacations. 
Let j be the first busy period (according to system-A) 
starting after to. If the interarrival times possess the 
memoryless property, then the return time Rj is inde- 
pendent of any property of system-B as observed prior 
to to. 

Proof. It is clear that the return time Rj depends on 
the lengths of the vacation periods taken after to and 
on the timing of the next arrival after to. Since the 
interarrival times posseses the memoryless property, 
the time from to to the next arrival is independent of 
the system history (prior to to). Since vacation lengths 
are also independent of the system behavior, the 
return time is independent of the system behavior 
prior to to. 

From Theorems 6 and 7 it is now easy to see that, 
for an M/G/I1 system, Section 2's theorems (and anal- 
ysis) still hold if the cold start times are replaced by 
the return times. Therefore, the system with vacations 
can be considered as a system with starter with the 
role of the cold starts played by the return times. For 
this reason, we now abandon the term "return time" 
and the notation Rj and denote them, as we did 
for the queue with starter, by "cold starts" and Si, 
respectively. 

This discussion suggests an approach for solving the 
M/G/I1 system with vacation periods: 

Corollary 8. An M/G/I1 system with vacation periods 
can be solved as follows. 

1. Compute the Laplace-Stieltjes transform (LST)for 
the distribution of a cold start (as seen by arrivals) 
resulting from the vacation periods. 

2. Use the expression for the LST of the cold start 
distribution computed in Step 1, and plug it into 
expression ( 16) for S*(s). 

3. The additional delay computed by this expression 
is the additional delay in the system with vacation 
periods. 

To adopt this approach, we first must calculate the 
distribution of a cold start. Keeping our old notation, 
we now add the vacation variable: 

V = the length of a vacation period; 

v(t) = the probability density function of V; 

V*(s) = the LST of v(t). 

We recall that the length of a cold start is denoted by 
S and that of an idle period by X. Since the arrival 
process is Poisson with rate X, x(t) = Xext. Moreover, 
due to the memoryless property of the arrival process, 
any time interval that starts at an arbitrary point, to, 
and ends with the first arrival after to, is also exponen- 
tially distributed with parameter X (like x(t)). 

To calculate the length of a cold start, we begin 
counting from the moment the system becomes idle; 
let us call this moment to. At to the server goes on 
vacation, and the time elapsing until the server returns 
is V. The first arrival after to occurs X time units 
after to. If X - V, then the server, on returning 
from vacation, finds a customer in the system, and 
the additional delay that this customer will suffer is 
V- X. If, on the other hand, X> V, then the returning 
server will take another vacation. Again, due to the 
memoryless property of the arrival process, the first 
arrival will occur X time units after the end of the first 
vacation. Thus, if X > V, we can calculate the length 
of the cold start recursively, as before. The following 
recursion summarizes these observations: 

Pr[S t] Pr[V-X X t] if V > X (19) Pr[S~t=Pr[S< t] if v<x. (9 

From this recursion we now solve for S*(s). From 
(19), and since V, X are independent, 

00 
s(t) = f Xe-A(4-t)v(u) du 

+ s(t) f v(u) X e-Aw dw du. (20) 

Taking Laplace transforms on both sides of (20), and 
with further manipulation, we obtain 

S*(s) = [V *(s) - V*(X)] + V*(X)S*(s). (21) 

Solving for S*(s) gives 

S*(s) =,X[ V*(S) - V*(X)] (22) S() (X - s)[1 - V*(X)f 22 
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From (22), and using 

dV*(s) 
dss=O 

we obtain 

-dS*(s) 1 - Vx - V*(X) 
ds s=O X(V*(X)- 1) 

Now that we know the LST and the first moment 
of the starter distribution, we can compute the LST 
of the additional delay from the analysis of the queue 
with starter. This computation is done by substituting 
(22) and (23) into (16): 

D*(s) = 1 - V*(s) (4 
( r s (24) 

Yes! this is the residual life of the vacation period! 
We have thus shown that the additional delay in an 
M/G/1 system with vacation periods is independent 
of the original delay and is distributed as the residual 
life of the vacation period. 

3.2. Direct Explanation for the Delay of a Queue 
with Vacations 

In Section 3.1, we showed that the delay in a queue 
with vacations actually is (and not only "could be 
thought of as") the sum of two independent random 
variables: 

* the delay in a queue without vacations; 
* an additional delay distributed as the residual life of 

the vacation period. 

Yet we did not give a direct queueing explanation for 
the fact that the additional delay is distributed as the 
residual life of the vacation period. We do so in this 
section. 

Consider the busy and idle periods in a regular 
M/G/1 system (denoted as system-A), as described in 
Figure 2a. We denote busy periods by Y,, Y2, ... and 
idle periods by Xi, X2, .... Now let us impose vaca- 
tions on this system (the new system is denoted as 
system-B). For "pedagogical" reasons, let us assume 
that the "vacation" is just another job the server must 
attend to. Thus, if we look from the server's point of 
view, we notice three properties: 

1. The server consumes work at the rate of "one unit 
of work per unit of time." 

2. At time points where a vacation Vi starts, addi- 
tional work, equaling (in amount) the vacation 
length I Vi 1, arrives to the system. 

3. A new vacation starts if and only if the amount of 
work in the system is exactly zero. This means that 
the server takes a new vacation either when it 

finishes working in the M/G/I1 system or when it 
returns from vacation and finds the M/G/I1 system 
still empty of customers. 

Figure 2b illustrates this situation. The solid line rep- 
resents the total amount of work as seen by the server 
(denoted by Userver(t)), while the broken line represents 
the unfinished work in the M/G/1 system with no 
vacations (denoted by UM,G,,(t)). 

Next, we notice that the server system operates in a 
first-come-first-served (FCFS) fashion. This is true for 
the following reasons: 1) MIGI 1 customers are served 
according to a FCFS policy. 2) "Vacation customers" 
arrive only when the system is empty. 3) The service 
discipline is non-preemptive for all types of cus- 
tomers. For this reason, the total time in system for 
an M/G/I1 customer arriving at time t to system-B 
is exactly Userer(t). Clearly, the time in system for 
the same customer in system-A is UM,G,,(t); thus, the 
additional delay suffered by this customer is given by 
Userver(t) - UM/G/I(t). 

In Figure 3a, we plot the function difference Userver(t) 
- UM,G,,(t) (denoted by D(t)) versus t. From this figure 

U(t) 

KJ\ K\ <~\KK \ 

-Yl--4-Xl 1"-4|X2 -!. Y3--- 
a 10 

Y2 X3 Y4 X4 Y5 

(a) The unfinished work in a regular M/G/1 system 

U(t) 

Usorvor(t) 

UM/G/1(t) 

'-I' \2-4 V 

V1 1 

vi V4 

(b) Vacation periods "added" to a regular M/G/I1 
system 

Figure 2. The unfinished work in a system with 
vacation periods. 
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y 
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(a) The additional delay: D(t) Userver(t) -UM/G/I(t) 

D,(t) 

V1 V2 Y2 V3Y3Y4 V4 Y5V5 virtual time 

V, V4 

(b) The additional delay versus virtual time 

Figure 3. The additional delay in a system with 
vacations. 

we can observe the following properties: 

1. In time segments corresponding to idle periods in 
system-A (Figure 2a), D(t) is consumed at the rate 
of "one work unit per time unit." 

2. In time segments corresponding to busy periods in 
system-A, D(t) remains constant. 

3. The time epochs where D(t) increases are those 
corresponding to the beginning of vacations. At 
such a moment, D(t) = 0 and discontinuously 
increases to the "height" of the vacation starting at 
that time. 

In this figure, we observe that D(t) is independent 
of any property of a system-A busy period (excluding 
its timing) since it stays constant during the duration 
of such periods. D(t) is determined only by the length 
of vacations and the length of system-A idle periods. 
This observation explains why the additional delay 
in the queue with vacations (as in the queue with 
starter) is independent of the delay in the regular 
M/G/1 system. For this reason we can represent any 
system-A busy period by its starting point only. We 
do so by contracting to a point any flat segment of 
D(t). This operation is done in Figure 3b, where the 
time axis becomes a virtual time axis and a segment 
Yi from Figure 3a is contracted to a point yi. The 

point corresponding to the beginning of a vacation, 
Vi, is denoted by vi. For this figure, we define Dv(t) as 
the (virtual) additional delay of virtual time t as seen 
in Figure 3b. In the transformation from 3a to 3b, we 
notice the following properties: 

1. Dv(yi) equals the additional delay suffered by all 
customers of busy period (in Figure 2a) Yi. 

2. DV continuously decreases at the rate of "one work 
unit per time unit." Whenever DV becomes zero, it 
increases by a discontinuous increment. 

3. The increments of Dv occur in epochs correspond- 
ing to vacation starts. The increment size is the 
vacation length. 

4. Let t be an arbitrary time epoch on the virtual time 
axis and vi be the epoch corresponding to the first 
vacation starting after t. From properties 2 and 3 
and from the structure observed in Figure 3b, we 
may imply that Dv(t) = vi- t. 

From these arguments it becomes clear that, in 
order to find the additional delay suffered in 
system-A, one may compute DV for the points IyiI in 
Figure 3b. This computation can be done as follows: 
We observe the time axis in Figure 3b and examine 
Dv(yi) for all yi on this axis. We first note that the 
length of a subsegment (vi, vi+,) is distributed accord- 
ing to the distribution of the vacation length. Then, 
we notice that the intervals between the adjacent y- 
points represent lengths of idle periods; therefore, they 
are exponentially distributed, with parameter X. Thus, 
in Figure 3b, the y-points behave like a stream of 
Poisson arrivals. Now, it is known that Poisson arrivals 
"see time averages" of continuous-time stochastic 
processes. Consequently, the fraction of arrivals ob- 
serving a property of a given stochastic process is equal 
to the corresponding fraction of time this property is 
found on the time axis (see Wolff 1982). For this 
reason it is now clear that the distance from an arbi- 
trary Yk point to the next v point is distributed as the 
residual life of the segments {(vi, vi+1)J. Since these 
segments are distributed as the vacation length, D,(yk) 
is distributed as the residual life of the vacation period. 

We thus arrive at the promised conclusion: D,(yi), 
the additional delay to customers in a system with 
vacation periods, is distributed as the residual life of a 
vacation period! 

4. Summary 

This paper studied queueing systems with starters and 
queueing systems with vacation periods. We showed 
that the delay distribution in the queue with starter is 
composed of the direct sum of two independent vari- 
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ables: 1) the delay in the equivalent queue without 
starter and 2) the additional delay suffered due to the 
presence of the starter. Using this decomposition prop- 
erty, we derived the Laplace transform of the addi- 
tional delay, both for discrete systems with geometri- 
cally distributed interarrival times and for continuous 
systems with Poisson arrivals. Using the same ap- 
proach, we then analyzed the MIGI 1 system with 
vacation periods. We first showed that the MIGI 1 
system with vacations can be thought of as a special 
case of the MIGI 1 system with starter, so that the 
delay in the MIGI 1 system with vacations can be 
easily found by using the formula for the delay of the 
M/G/1 system with starter. Second, we explained, 
using geometric arguments, why the additional delay 
in the vacation system is distributed as the residual 
life of the vacation period. 
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