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Abstract

We present an analytical model for evaluating the per-

formance of finite-buffered packet switching multistage

interconnection networks using blocking switches un-

der any general traffic pattern. Most of the previous

research work has assumed unbuffered, single buffer or

infinite buffer cases, and all of them assumed that ev-

ery processing element had the same traffic pattern (ei-

ther a uniform traffic pattern or a specific hot spot pat-

tern). However, their models cannot be applied very

generally. There is a need for an analytical model to

evaluate the perform ante under more general condi-

tions.

We first present a description of a decomposition &

iteration model which we propose for a specific hot

spot pat tern. This model is then extended to handle

more general traffic patterns using a transformation

method. For an even more general traffic condition

where each processing element can have its own traf-

fic pattern, we propose a superposition method to be

used with the iteration model and the transformation

method. We can extend the model to account for pro-

cessing elements having different input rates by adding

weighting factors in the analytical model.

An approximation method is also proposed to refine

the analytical model to account for the memory char-

acteristic of a blocking switch which causes persistent

blocking of packets contending for the same output

ports. The analytical model is used to evaluate the

uniform traflic pattern and a very general traffic pat-

tern “ EFOS”. Comparison with simulation indicates
that the analytical model is very accurate.
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1 Introduction

Packet-switching Multistage Interconnection Networks

(MIN) have been proposed for applications in mul-

tiprocessor systems for interconnecting a large num-

ber of processing elements (PE) and memory modules

(MM), and also for fast packet switching various pack-

ets to their destination ports [21]. The performance

analysis of MIN’s thus becomes an important issue.

A considerable’ amount of performance analysis has

been reported on clocked, packet-switched multistage

interconnection networks. Example networks are the

Banyan [5] and Omega [13] networks. Most of the pre-

vious research was limited to only unbuffered or infi-

nite buffered cases with a uniform traffic pattern or a

particular hot spot traffic pattern. Dias and Jump [4]

and Jenq [7] analyzed the single buffer case under a

uniform traffic pattern. Kim and Garcia [8] analyzed

a single buffered network with nonuniform traffic pat-

terns. Kruskal and Snir [9], [10], [11] analyzed the per-

formance of banyan networks with infinite buffer sizes

under uniform and a particular hot spot traffic pattern.

Szymanski and Shaikh [19], Yoon et al. [23] all pre-

sented an analytical model to analyze a finite buffered

MIN under a uniform traffic pattern only. Willick and

Eager [22] also analyzed the infinite buffered case; their

model is able to analyze any given general traffic pat-

tern except that they need a special purpose analysis

for each non-uniform pattern. Theimer et al. [20] pro-

posed a technique for modelling the persistent blocking

behavior of a single buffered network with a uniform

traffic pattern.

In this paper, we present an analytical model for

clocked, packet-switched multistage interconnect ion
networks built with 2x2 blocking switches. The model

is based on a decomposition and iteration analysis of

the Markov chain representing the output queue in

each switch. The goal is to provide a simple analyti-

cal model which can be applied to evaluate the per-

formance of multistage interconnection networks with
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Figure 1: The 3 stage Banyan network with buffers at

output ports of each switch

arbitrary switch sizes, arbitrary buffer sizes, arbitrary

input rates for each processing element and any gen-

eral traffic pattern.

This paper is organized as follows. Section 2 de-

scribes the model assumptions and the approach. The

decomposition and iteration method is introduced

with a unique routing probability matrix to repre-

sent the steady state traffic flow. A uniform traffic

pattern and a special hot spot pattern are discussed

using this matrix. A transformation method is int re-

duced in Section 3 to allow any general traffic pattern

to be mapped onto the routing matrix to represent the

steady state flow. A superposition method is also in-

troduced to allow each processing element to have its

own trafIic pattern. The resulting memory referencing

pattern is even more general; as an example we ana-

lyze the Non-Uniform Traffic Spots (NUTS) pattern

[12]. A weighting factor is used with the mapping pro-

cess to handle the case when processing elements are

allowed to have different input rates. An approxima-

tion method is introduced in section 4 to account for

the” memory” characteristics inherent in the blocking

scheme. Results are verified through simulation in sec-

tion 5. Conclusions are given in section 6.

2 Analytical Model for Uniform

Traffic and Hot Spot Traffic

Patterns

2.1 Architecture Description and As-

sumptions

In this paper, the interconnection network we consider
is a clocked, packet-switched finite-buffered Banyan

network made up of 2x2 switches, each of which has

buffers of finite size K at their output ports (see Figure

1). There are N processing elements and N memory

modules interconnected by the n-stage (i.e. N = 2n

) interconnection network. All the operations of input

and output take place at the end of each cycle. The in-

terconnection network accepts requests from the input

nodes (processing elements), then routes them to the

output nodes (memory modules). Responses to these

requests are returned from the output nodes through

the interconnection network in the reverse direction to

the original requesting nodes. The “forward” network

and “backward” network are distinct, but are identi-

cal in topology. It is sufficient to discuss the delay and

throughput performance of the forward network only.

Each packet generated at the processing elements

carries an address tag with a number of bits equal to

the number of stages of the interconnection network.

The address tag is a binary representation of the desti-

nation address. It is then fed into the first stage of the

network. The first stage switch examines the first (i.e.

most significant) bit of the address tag; if it is a O, the

packet is routed to the queue at the upper output port.

If the first bit is a 1, the packet is routed to the queue

at the lower output port (see Figure 1). The packet

then waits in the queue until its turn to be served.

The routing process repeats in each stage to choose a

proper output port. A blocking switch is assumed in

which if a head-of-queue packet cannot go to the next

stage due to a full buffer or a “contention failure” for a

single available position, it stays at the current queue

and waits for the next cycle to try again. The blocking

phenomenon has an implied memory characteristic in

that a blocked packet will attempt to reach the same

output port again. This memory characteristic makes

the analytical modelling difficult. We shall discuss an

approximation method to be incorporated into the an-

alytical model to model this memory characteristic in

later sections.

When two packets from different queues in the same

stage contend for the same output queue in the next

stage, a contention occurs. If there are more than two

spaces available at the output queue, the switch is as-

sumed to be fast enough to accept both packets in one

cycle. If there is only one space available, a packet is

randomly chosen to fill up this space; the other packet

is then” blocked” and stays at the original queue. How-

ever, if no space is available in the next stage (i.e. the

queue at the output port is full), then both packets

are blocked.

Packets are assumed to be of the same length (i.e.

fixed size packets). A packet is generated by each pro-

cessing element independently with probability Q in

each cycle. All processing elements are assumed to

have this identical bernoulli input process. This as-

sumption is later relaxed by using weighting factors

to allow each processing element to have its own in-
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put rate qj, 1 < j < N. We assume that there is no

buffer space at the processing elements. After being

generated, a packet is discarded if it cannot be deliv-

ered to the first stage of the interconnection network

either due to a full buffer or a cent ention failure. Dis-

carded packets are not re-submitted. A packet, once

accepted by the network, is never discarded inside the

network. The input process is independent of the dis-

carding process. (An extension of the current model

to allow blocked packets to be stored in a finite-sized

queue or an infinite queue is underway.) An important

performance measure is the total time a packet spends

in the network. Time delay is meaningful only for those

packets accepted into the network. The probability of

acceptance, another performance measure, is the prob-

ability that a packet is accepted into the network after

it is generated. The normalized throughput is simply

the probability of acceptance multiplied by the input

rate. Current work also includes an extension to the

case of multiple packet generation.

Each processing element has a memory module ref-

erencing pattern. A referencing pattern is the set of

probabilities with which a packet accesses the vari-

ous memory modules. All previous work assumes that

processing elements have the same referencing pattern.

We shall allow PE’s to have their own traffic pattern in

Section 3. The memory module is assumed to be fast

enough to accept 1 packet per cycle from switches at

the last stage. This fast memory module assumption

implies that there is no blocking at the last stage since

a dedicated link connects 1 memory module to the

output queue (see Figure 1). A slower memory mod-

ule (e.g. 2 cycles to accept a packet) will have a severe

effect on the performance of the network, Extension to

slower memory models is underway.

2.2 Routing Model

In the real world, the packets are routed according to

their destination address. However, in order to ana-

lyze the network analytically, an abstract flow model

that can be used in an analytical model must be estab-

lished that at least faithfully reflects the steady state
flow situation in the network. We propose a routing

matrix r-t,j , 1 < i < n, 1 < -j < N where rt,~ is the

routing probability of the jth input port in stage i. A

packet entering a switch will be routed either to the up-

per output queue with probability T,,j or to the lower
output queue with probability 1 — r~~. To simulate a

uniform traffic pattern, we simply let all T,,j be ().5.

With equal probability of choosing output queues, no

memory module is preferred. A special hot spot pat-

tern can be created by letting all r,,j be an identical

value greater than 0.5. For instance, by letting all TI,J

be 0.8 in a 10 stage network, 10.770 (= .810) of the to-

tal traflic will go to memory module O in a 1024-node

network with 2.7~o of the traffic going to the second

highest referenced memory modules (all memory mod-

ules with a single l-digit in their address tag) and other

fractions of traffic to the other memory modules. The

advantage of this routing model is that by changing

the value of T,,3 with proper mappings from real traffic

patterns, we can evaluate any general traffic pattern.
We leave the general r%,] to be discussed in Section 3.

Throughout this section, all r,,j are assumed to have

the same value, ri,j = r.

2.3 Analysis

The proposed approximate analytical approach em-

ploys a decomposition and iteration strategy. The real

interconnection network is in fact a network of finite-

buffered queues with blocking. The dependency among

queues, caused by the blocking from stage to stage,

makes the exact anal ysis intractable. We shall use a

similar approximation technique as that applied in

tandem queues with blocking [2], [3] and [17] where

approximate anal yses are used. The approxim at ion

method is to decompose each queue in the tandem

configuration with assumed input rates and blocking

conditions. The exact Markov chain is then solved to

find the corresponding input rates and blocking con-

ditions. Each decomposed queue is analyzed, then the

whole process is repeated until it converges, if it is to

have steady state. The concept of using this decompo-

sition and iteration approximation method in analyz-

ing the finite-buffered Banyan network is very similar

to that of tandem queues except that instead of a sin-

gle input source and a single output queue for each

queue in the tandem configuration, the interconnec-

tion network has 2 input sources and 2 output queues

for each queue in the network (except the last stage

queue where only 1 output sink is presented, name] y,

the memory module). Therefore, when we solve for

the equivalent input rates and blocking conditions for

a decomposed queue, we consider the combined input
from 2 input sources and the combined probability of

blocking from the 2 output queues. The approach is as

follows :

Let Ql,j represent the jth queue in stage i and P,,j (k)

be the steady state probability that there are k packets
in, the queue Q%,3. Let Q$-l,J1 and Q3–1,32 be the two

input sources from stage i-1 that feed Q,,j. I,et X [i]

be the probability that there are i packets destined to

Q,,j from its two input sources. In the following, we
solve for the equivalent input rates for a queue Q~,j

which is located at output port O :
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X[2] X[2]B X[2]B

X[o] XIO]B+X[l](I-B) XIO]B+X[l](l-B) XIO]B+(l-XIO])( l-B)

Figure 2: Markov chain of a queue Qi,j extracted from

the network where the state variable represents the

number of packets in that queue

X[l] = 2~(1 – T)(1 – f’~-l,~l(o))(l – ~i-l,j2(0))+

7’[P~_l,jl(0)(l ‘F’i-l,j2(0))+Z’i-l,j2 (0)(1 ‘Pt-l,jl(o))l

X[2] = [T(1 – P+l,jl(o))] “ [T(1 – ‘i-l,j2(0))]

X[o] = 1 – X[l] – X[2] (1)

The first term in the X [1] equation corresponds to

the case that both queues in stage i-1 are not empty,

and one chooses output port O with probability ~ and

the other chooses another output port with probabil-

ity 1 – r-. The second term corresponds to the case

that one queue in the previous stage is empty, and the

other is not. The non-empty one chooses the output

port O with probability r. The summation of probabil-

ities in both cases represents the probability that only

one input packet feeds the queue, The X [2] equation

represents the case when both queues in the previous

stage are not empty and they both choose output port

O with probability r.

Regarding the equivalent blocking condition, let Bi,j

be the probability that a packet in the jth queue in

stage i is blocked at the end of the cycle. Let Ci,j be the

probability that the jth queue in stage i is blocking a

packet in stage i–1. Let Qa+l,jl and Qi+ltiz be the two

output queues of Qi,j and let Qi,l be the queue that

feeds both Qi+l,jl and Qi+l,jz. Then the equivalent

blocking condition for queue Qi,j is as follows :

Bi,j = ~ . Ci+l,jl + (1 – ~) . Ci+l,jz

C1+l,j~ = P*+l,jl(~)+ ~ “ (1 – ‘i,/(o)) “ ‘i+l,jl(K – 1,

(2)

The first term in the Bi,j equation represents the case

when the packet at the head of queue Qi,j chooses

Qi+l,jl with probability r and is blocked bY Qi+l,jl.
The second term represents the other case when the

packet chooses Bi+l,jz and is blocked. There are two
situations in which a queue blocks a packet in the pre-

ceding stage : firstly, when the queue is full, and sec-

ondly, when the queue has only one more space and a

contention from Qi,l wins the arbitration.

Given a set of initial values for the variables of

the network, we “extract” queue Q1,l from the net-

work (with the equivalent input rates and block-

ing conditions as exist in the network) as an inde-

pendent queue. The Markov chain for this queue is

then solved to get new values for the state proba-

bilities. A sample Markov chain for the queue Q,,j

with buffer size 4 is shown in Figure 2 where B rep-

resents the blocking probability Bi,j, We repeat this

process for other queues in the first stage, in the or-

der Q1,2, Q1,3,.. .Ql,iv. Using these new state proba-
bilities as the new input rates, we repeat the same

process for all queues in the second stage in the or-

der Q2,1, Q2,2, . ..Q2.N. This process is repeated for all

stages. Now we have a new set of values for the net-

work variables which can be used to compute the new

input rates and blocking probabilities. This new set

of values is used in the next iteration to compute an-

other set of new values, etc.. The iteration process is

repeated until the difference between two consecutive

iterations is below 10–6.

The performance measures that are of interest are

the probability of acceptance, the normalized through-

put and the average time delay. There are two ways to

calculate the probability of acceptance. If we sum the

output rate over all output ports and divide it by the

total input rate, we get the probability of acceptance :

PAOU,= ~~1[1 - Pn,i(0)]
Nxq

(3)

The total output rate over the input rate is the proba-

bility of acceptance at the output port. From the input

port, we solve for the probability that a packet gen-

erated at the PE’s is discarded due to a full buffer or

a contention failure at the first stage. This discard-

ing probability is Bo,j , which can be solved for using

equation (2). Hence,

PAa. = 1 – l?o,j (4)

Both values, although solved in different ways, should

be equal when the MIN reaches steady state. (This

can be used to test for the correctness of the model.)

The normalized throughput is found by multiplying

the probability of acceptance by the input rate. We

apply Little’s result to calculate the average time de-

lay of a packet. When the network reaches steady state,

we take the sum of the mean queue size for the whole
network using the steady state probabilities of queue

size of each queue. Given the throughput and the av-

erage number of customers in the system, the average

time delay can be solved for by applying Little’s result.
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2.4 Results

The analytical results of a finite-buffered multistage

interconnection network under a uniform traffic pat-

tern and a hot spot pattern were shown in [14]. For

various traffic loads and various network sizes (from a

single stage to a 9-stage Banyan), the improvement of

the probability of acceptance by adding buffers (from

unbuffered to buffer size 8) were shown for both the

uniform traffic pattern and various hot spot traffic pat-

terns. Another experiment was shown for a 9-stage,

8-buffered Banyan where the average busy buffer size

was calculated in each stage. By varying the offered

load and the degree of hot spots (0.5 < ~ < 1.0), we

can see how the average busy buffer size grows ac-

cording to different situations. The average time delay

for a 9-stage, 8-buffered Banyan network was shown

with various offered loads and various degrees of hot

spots. A tree build-up time, defined as the time for

the saturated tree [18] to build up, was discussed and

a method for calculating the upper bound was shown

using the analytical model. The analytical model can

aleo be extended [14] to analyze the performance of

the combining network suggested in the NYU Ultra

computer project [6] and [18]. The effect iveness of a

combining switch was analyzed against various offered

loads and queue sizes for a 9-stage combining network.

It was shown that the combining switch works only

when there is a “hot” memory cell inside the hot spot

memory moduIe.

3 Analytical Model for General

Traffic Conditions

In this section, we consider very general traffic con-

ditions where not only a general traffic pattern is

allowed, but also each processing element can have

its own traffic pattern and its own input rate. The

basic decomposition and iteration model remains as

the main modeling approach. The additional analysis

which is needed for general traffic conditions is reduced

to finding the proper representation of the steady state
traffic flows in terms of the routing probabilities ~i,j.

3.1 Model Assumptions

We still consider a clocked, finite-buffered multistage

interconnection network as discussed in the previous

section. All assumptions made in section 2 remain the

same except :

0 Any general memory referencing pattern is al-

lowed.

AO

Al

AZ

A3

A4

AS

A6

AT

Figure 3: A General memory referencing pattern

shown in terms of accessing probabilities Aj

● Each processing element can have its own refer-

encing pattern.

. Each processing element can have its own input

rate.

These three different assumptions represent differ-

ent levels of general traffic patterns. We shall discuss

the modeling approaches for these three different as-

sumptions in the next subsections.

3.2 Identical General Traffic Patterns

for the Processing Elements

A traffic pattern that can be in any form implies that

the ~z,j’s in the routing matrix no longer have the same

value r as discussed in the previous section. The ap-

proach to model this general traffic pattern is to find

a mapping scheme that transforms the given referenc-

ing pattern into a set of T2,j‘s which reflects the steady

state traffic flow in the network.

Let us take a 3 stage Banyan network as an exam-

ple, as shown in Figure 3. Since we assume that all

processing elements have the identical general traffic

pattern, we only discuss the transformation method for

one processing element. If there exists a steady state

referencing pattern, we can represent it in terms of

destination accessing probabilities Aj, the probability

that a new packet generated by a processing element

chooses memory module j as its destination. Consider
a packet generated by processing element O and ob-

serve the path it takes as it travels through the net-

work to access the memory modules. A packet chooses

memory module O with probability A. which equals

rll . T21 . r31. Similarly, a packet chooses memory mod-

ule 1 with probability Al = rll rzl . (1 — r31 ). Using

these two equations, we find T31 h terms of A. and

Al.

A.

’31 = A. + Al
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The other routing Probabilities can be found in a sim-

ilar way :

Az

’32 = Az + A3

Ad

’33 = A4 + A5

A6

’34 = A6 + AT

A.+ AI

~21=Ao+Al+Az+A3

A4 + A5

‘22= A4+A5+A6+AT

AO+A~+AZ+A3

‘11= Ao+Al+Az +A3+A4+A5+A6 +A7

Since there is only one traffic pattern for all processing

elements, this routing probability set is valid for all

other processing elements.

This transformation method is simply a mapping

of the memory referencing pattern onto a set of rout-

ing probabilities. We incorporate the transformation

method into our analytical model approach in section

2. When we calculate the equivalent input rates and

blocking probabilities, we replace the value r in equa-

tions (l)-(2) with the proper T,,j values. Thus, the de-

composition and iteration model we proposed in sec-

tion 2 can be extended to analyze a multistage inter-

connection network with any general traflic pattern.

3.3 Different General Traffic Patterns

for Processing Elements

For more generality, we allow each processing element

to have its own general traffic pattern. In practice, it

is quite possible that the traf%c requirement for each

processing element is different from the others. Let us

assume that they all have the same input rate. The

modelling approach for this case is to find a proper set

of routing probabilities T,,j which reflects the combined

traffic flow in steady state. A superposition method is

proposed, in addition to the use of the transformation

method, to find this proper set of routing probabilities.

We first apply the transformation method to all pro-

cessing elements to transform their general memory

referencing patterns into N sets of routing matrices.

Since all processing elements have the same input rate,

we simply take the mean value of these N sets of rout-

ing probabilities to find a routing matrix that reflects

the combined traflic flows in steady state. This rout-
ing matrix is used in the decomposition and iteration

model. Thus, the anal ytical model can be extended to

analyze the case where each processing element hss its

own traffic pattern.

3.4 Different Input Rate and Different

Traffic Patterns for the Processing

Elements

In many cases, the processing elements might have dif-

ferent packet input rates. This presents the most gen-

eral traffic condition. The modelling approach, again,

is reduced to findkg the proper representation of the

routing matrix.

A slower source contributes less to the steady state

flows. Hence we must determine a weighting factor for

each source to reflect its contribution to the steady

state traffic. The ideal weighting factor is the input

rate of each source. When we take the mean of the

N routing matrices, we then weight their contribution

according to their input rates. If we incorporate this

weighting factor, the model can be extended to analyze

the case where each processing element has its own

traffic pattern and its own input rate.

3.5 Results

Since the proposed analytical model employs several

approximate methods, it is important to study how

these approximations aHect the model accuracy. There

are two approximations in the modelling approach :

w decomposing a queue from a network of queues

with blocking into an independent queue.

● using a general routing matrix to model the

steady state flows.

The first approximation is obvious since dependent

queues are decomposed into equivalent independent

queues and solved individually. Some accuracy is lost

because our model neglects the dependency and cou-

pling among the queues. The second approximation

allows packets to choose their output ports every cy-

cle independently according to the routing probabili-

ties, instead of the real-world address tag. This renewal

routing choice allows a blocked packet to choose a dif-

ferent output port in the next cycle. This renewal as-

sumption renders the analytical model optimistic since

it’) allows” blocked packets to be routed around a con-

gested queue. In the real world, blocked packets re-

peatedly access the same destination, and most likely,

these blocked packets will be blocked again (especially

when the traffic is not uniform).

The EFOS (Even-First-Odd-Seccmd) pattern was

proposed in [12] using an Omega network where even
addressed processing elements send all their traffic to

the first half of memory modules uniformly while the

odd addressed ones send their traffic to the second half

of memory modules uniformly. The destination traffic
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o~0.0 0.2 OA 0.6 0.8 1.0
Throughput

Figure 4: Comparison of results for a 6 stage, 4-

buffered Omega network

distribution looks uniform, but there are severe con-

tentions for the common paths inside the network. It

is an example of our general traffic pattern where there

are two traffic patterns for the processing elements. A

6 stage Omega network with 4 output buffers at each

switching element was evaluated under both a uniform

traffic pattern and an EFOS traffic pattern. The ana-

lytical results we obtained are plotted against simula-

tion results in Figure 4. As predicted , the analytical

model is very optimistic due to the independent rout-

ing choices it allows. When severe blocking is present

due to contention, the blocked packets will choose the

same output queues repeatedly in the real world while

the renewal choice in the analytical model allows the

blocked packets to choose other queues. This inher-

ited “memory” structure in blocking switches severely

degrades the performance since it is likely to have per-

sistent contention for a queue once contention occurs.

The discrepancy between analytical and simulation

data is caused mainly by this memory characteristic

of the blocking switch. We propose an improvement in

the next section to model this “memory” behavior of

a blocking switch.

4 Analytical Model for a Block-

ing Switch with Persistent

Blocking

4.1 Model Approach

Since the basic model is a renewal process, we continue

to model the memory behavior as a renewal process,

However, the behavior of a blocked packet, after its

first blocking, is such that the routing choice no longer
uses the renewal probability r~,j. Biasing the routing

probabilities to account for this does not help since it

FiWre 5: The states of a server during its busy period.

changes the memory referencing pattern. The rout ing

probabilities were created to reflect the steady state

memory referencing pattern; therefore, it is necessary

to keep the values unchanged.

Although an exact model of this persistent block-

ing behavior would require that we keep track of how

many times a packet has been blocked at a given node,

we choose an approximation which captures the “first

order” effect of this persistence using the following two

state model. When the queue is not empty : we model

the server as being either in the “new” state or the

“blocked” state. When a packet first comes into the

server, the server is in the new state. The server enters

the blocked state when the packet is blocked, and it

remains in the blocked state until the blocked packet

finally goes through to the next stage. This cycle re-

peats until the server empties the queue and becomes

idle. Observe that the server is inactive when it is in

the blocked state. While in the new state, the server

obeys the renewal behavior choosing an output port

according to the routing probability TZ,J. Hence, we can

approximate a blocking switch with “memory” charac-

teristics by a finite buffer queue with a reduced service

rate. The reduced portion is the probability that the

server is in the blocked state.

The diagram in Figure 5 shows how the server al-

ternates between the new state and the blocked state

during its busy period. Let b be the probability that

a new packet is blocked when it tries to go to the

next stage. Let c be the probability that a blocked

packet is blocked again when it tries to go to the same

destination. Then for our approximation, the steady

state probability that the server is in the blocked state,

PblOcked, can be solved in terms of b and c :

where b is the blocking probability (for which we used

the notation Bt,j in section 2.3). Once blocked, it is

more likely that a blocked packet gets blocked again;

therefore, the value of c is selected to be larger than

the value of b. In fact, when a packet is in the blocked

state, the length of the destination queue in the next

cycle will be either K (full) or K-1 (only one space

available). If we disregard how many times it has been



blocked previously, there will be only two cases : ei-

ther the blocked packet faces a full queue or a queue

with one space left. In the first case, with probability

~~~~~~~_ll, the packet will be blocked again. In the

second case, with probability -T, the packet

will face possible contention from the other queue in

the same stage which feeds this destination queue. In-

corporating these two probabilities in equation (2), c

can be found in a similar way :

C = ~ . C~+l,jl + (1 – ~, “ Ci+l,j2

The probability that the j l-th queue in stage i+l is

blocking a packet in stage i, C$+l,jl, is :

R+l,jl(~ – 1) _
C,+,,jl = ; .(1 –P,,J(0)).

P,+l,jl(lf) + p,+l,jl(~ – 1)

Pt+l,jl(K)

‘pi+l,jl(~) + pi+l,~l(K – 1,

Pbl.ck.d is the probability that the server is in the

blocked state. During this period, the server is inac-

tive. Therefore, we may use this probability to approx-

imate the blocking switch with “memory” characteris-

tic. At the beginning of each cycle, the server tosses a

coin which comes up heads with probabdlt y PblOC&.d,
. .

in which case the server will be blocked (inactive). If

there is a packet at the server, it stays idle until the

next cycle when the coin will be tossed again. With

probability 1 – Pb&~ed, the server will be active. The

queue length then determines whether the server will

send a packet or not. If there are packets in the queue,

the server takes the first packet and routes it according

to the routing probability.

Incorporating the probability Pbl..k.d into our pre-

vious model, the approach is then similar except that

the equivalent input rates and blocking probabilities

are different. In the original model, when a queue is

not empty (with probability 1 - Pt,j (0)), it tries to

transmit a packet to the destination in stage i+ 1. How-

ever, for the persistent blocking model, a queue tries

to transmit a packet to the next stage with probability

(1 –P,,j (0))” (1 – pb~~.ked), the former is the probability
that the server is not empty and the latter is the prob-

ability that the server is in the “active” state. When

the server is not empty and it is active, it transmits a
packet to the next stage.

Let us define P,~~f (0) to be the effective probability

that Q,,j will not send a packet (either the server is
empty or the server is not empty and is blocked). Let

P$,j,bf.eked be the probability that Qt,j k nOt empty

and is in the blocked state. Then the effective input

rates of a queue, Qi,j in this persistent blocking model

are similar to the ones in section 2.3 :

X[l] = 2r(l – T)(1 – P;qjl(o))(l – P,!QO))

+T[P,~{J2(0)(l–Pte!{J~ (0))+p~Ifj~ (0)(1 ‘pf!{,~~ (0))1

X[2] = [T(1 – Py{,jl(o))] . [T(I – P;:{,,,(o))]

X[o] = 1 – X[l] – X[2]

Pf!{jl(o) = 1 – (1 – Pt–l,jl,blocked ) .(1 - J’-l,,l(o))

F’t’<{j2(0) = 1 – (1 - pt–l,j2,blocked ) .(1 - P,-l,,Z(o))

The equivalent blocking probability Bt,3 can be

found as follows :

Bt,3 = T . Ct+l,jl + (1 -T) . Ct+l,jz

C*+~,jl = P~+l,jl(~)+~ “(1 ‘pt~{f(o)) ‘pt+l,~l(K– 1,

Incorporating these equivalent input rates and

blocking probabilities into the previous model, we can

evaluate a multistage interconnection network with

persistent blocking behavior. We first calculate the

equivalent input rates and blocking probabilities for

each queue in the first stage. Then we decompose the

first queue in the first stage and solve its Markov chain

with the equivalent input rates and blocking probabil-

ities. The remaining queues in the first stage are de-

composed and their Markov chains are solved one by

one. The steady state probabilities for these queues

are used to calculate the equivalent input rates to the

queues in the second stage. The queues in the second

stage are then decomposed and solved. This process is

repeated for all stages. The analytical model iterates

this decomposition process until the throughput con-

verges. Then we calculate the time delay using Little’s

result. Other performance measures can be computed

using the steady state parameters of the system.

4.2 Results

We ran our model incorporating this new technique

to handle the memory behavior for the same 6-stage

Omega network (as in Section 3.5) with buffer size 4

under both the uniform traffic and the EFOS traffic

pattern. The result is shown in comparison with the

former model in Figure 6. The improved model greatly

reduces the discrepancy between the simulation and

analytical model results.
For a detailed study, we compare the improved an-

alytical results with simulation in Figures 7-14. The

confidence range of these simulations is 95Y0. The first

case shown in Figures 7-8, is for a 4-buffered, 6 stage
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Figure 6: Comparison of results for a &stage, 4-

buffered Banyan network with and without the” mem-

ory” behavior improvement

Omega network with a uniform traffic pattern. In Fig-

ure 7, the throughput is compared with various offered

loads and in Figure 8, the average time delay is com-

pared. The offered load is varied from 0.1 pkt/cycle

to 1.0 pkt/cycle for each processing element. For of-

fered loads within the range of small loss probability

(q <0.7 pkt/cycle), the simulations verify the accu-

racy of the analytical results. Beyond this load (when

packets begin to be discarded), the analytical results

are slightly optimistic.

Figures 9-10 show the case of a 4-buffered, 6

stage Omega network with an EFOS traffic pat-

tern. Throughput and average time delay are plotted

against offered load. The non-uniformity of this pat-

tern severely degrades the performance. The through-

put graph shows very good correspondence between

analytical results and simulations. For offered load

within the low-loss range (q < 0.4 pkt/cycle), delay

performance of the analytical result is very accurate.

However, delay performance of analytical results are

still slightly optimistic in heavy load cases.

The third case is included to determine whether the

analytical model performs well with a larger buffer.

The results for an 8-buffered, 6 stage Omega network

with a uniform traffic pattern are shown in Figures
11-12. Except with heavy load (q=O.9 and 1.0), an-

alytical results measure well when compared to sim-

ulations. The throughput and delay performance are

optimist ic when the total input enters the range of

heavy load. This simulation indicates that the analyti-

cal model performs well for networks with other buffer

sizes.

We show the analytical results of a large sized net-

work in Figures 13-14, namely a 4-buffered, 10 stage

(1024x1024) Omega network with a uniform trafilc

Off&d Lmd

Figure 7: Throughput comparison for a 4-buffered, 6

stage Omega MIN with a uniform traffic pattern
<J

2>
1

— h~
. .*

Offered Load

Figure 8: Mean delay comparison for a 4-buffered, 6

stage Omega MIN with a uniform traffic pattern
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Figure 9: Throughput comparison for a 4-buffered, 6

stage Omega MIN with EFOS traffic pattern
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Figure 10: Mean delay comparison for a 4-buffered, 6

stage Omega MIN with EFOS traffic pattern
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Figure 11: Throughput comparison for an 8-buffered,

6 stage Omega MIN with a uniform traffic pattern
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Figure 12: Mean delay comparison for an 8-buffered, 6

stage Omega MIN with a uniform traffic pattern
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Figure 13: Throughput comparison for a 4-buffered, 10

stage Omega MIN with uniform traffic pattern

Figure 14: Mean delay comparison for a 4-buffered, 10

stage Omega MIN with uniform traffic pattern

pattern. Again, the analytical model is slightly opti-

mistic when the offered load exceeds the maximal at-

tainable output. This indicates that the model is suit-

able for large sized networks as well.

4.3 Conclusion

An analytical model was developed to evaluate the

performance of finite-buffered Multistage Interconnec-

tion Networks with any general traffic pattern. The

Interconnection Network was modelled as a network

of finite-buffered queues with blocking. We proposed

a decomposition and iteration method to analyze this

network of queues with blocking. A transformation and

superposition method was then proposed to analyze

these networks for any general traffic pattern. How-

ever, the renewal routing choice assumption caused the

modeling results to be optimistic. Therefore, we pro-

posed approximate techniques to model the persistent

blocking situation. The analytical results were com-

pared to the simulation in different buffer sizes and

different network sizes under both a uniform traffic

and a general traffic pattern. The simulations show

that the analytical results are very accurate when the

offered load does not exceed the maximal attainable

total output. For cases where the offered load is beyond

the maximal attainable output, the analytical results

are slightly optimistic. This verifies the accuracy and

the flexibility of the analytical model.
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