ON THE PERFORMANCE OF WAVELENGTH DIVISION MULTIPLE
ACCESS NETWORKS*

Jonathan C. Lu

anc

Leonard Kleinrock

Computer Science Department, University of California, Los Angeles

Abstract

This paper presents a mathematical model which approxi-
mates Wavelength Division Multiple Access (WDMA) net-
works with general hardware configurations and arbitrary
traffic patterns. We first study the case of a uniform traffic
matrix and observe that, when the number of wavelengths
is fewer than the number of stations, it is better to have
both tunable transmitters and tunable receivers, rather than
having only either one of them tunable. Furthermore, we
find that only a small number of tunable transmitters and
receivers per station is needed to produce performance close
to the upper bound. We then construct a general traffic
model and propose an iterative solution procedure. A case
of hot-spot traffic is studied using this model. We find that
adding more resources to the hot spot node will help improve
its performance, but only to a limited extent determined by
the traffic imbalance. The match between the model and
simulation results are shown to be excellent.

1 Introduction

The rapid development of lightwave technology offers the
potential of a huge amount of bandwidth in a single optical
fiber. It is conceivable that we could construct multiple ac-
cess networks with a total capacity of around 50 terabits per
second by using the low-loss passband of optical fibers (1200~
1600 nm) {1]. An obstacle to realizing such high-capacity
networks lies in the bottleneck at the electronic interface,
which can modulate/demodulate the light at a mere fraction
of the optical bandwidth. Therefore, to tap the bandwidth
potential of optical fibers, the network architecture must em-
ploy some form of concurrency, i.e. the ability to simultane-
ously convey a multitude of distinguishable messages. One
such approach, called Wavelength Division Multiple Access
(WDMA), could achieve this by operating on multiple chan-
nels at different wavelengths, with each channel running at
the speed of the electronics of an end user station. By as-
sembling a large number of wavelength-multiplexed channels,
WDMA carries the potential of providing the network capac-
ity required by future applications.

One class of WDMA networks is the multi-hop network
[2], which is constructed by setting the transmitters and/or
receivers of a station to be tuned at certain fixed wavelengths.
A link is formed between two nodes when a transmitter of one

*This work was supported by the Def Ad d R h Projects
Agency under Contract MDA 903-87-C0663, Parallel Systems Laboratory.

node and a receiver of the other node both tune to the same
wavelength. The way these transmitters and receivers are
tuned defines an interconnection pattern. An early proposal
for the interconnection pattern consisited of several stages
connected through a Perfect Shuffle [3]. However, there is no
a prior: reason to be restricted to this interconnection pat-
tern. Two other papers [4, 5] propose schemes to optimize
the logical connectivity by (slowly) retuning the transmit-
ters and receivers of the stations adaptively to the traffic.
Another class of WDMA networks [6, 7] assumes single-hop
communications which employs tunable transmitters and/or
receivers with rapid tuning to dynamically set up connections
between stations on a per packet basis. Both the single-hop
and multi-hop networks can achieve an aggregate throughput
substantially larger than the electronic speed of a single sta-
tion. An advantage of single-hop over multi-hop communica-
tions is that multi-hop implies longer routes and thus larger
propagation delays, which is the dominating delay compo-
nent in high-speed networks. In this paper we consider only
single-hop cases.

Ramaswami and Pankaj (8] compared having either tun-
able transmitters only, or tunable receivers only, or both,
assuming each station is equipped with only one transmitter
and one receiver. Chlamtac and Ganz [9] discussed the de-
sign alternatives of WDMA star networks where each station
can have multiple transmitters and receivers and some finite
buffers. Both of these two previous studies were conducted
only for the case of a uniform traffic matrix. The purpose of
this paper is to present a mathematical model for WDMA
networks to examine the effects of resource contention (of
transmitters, receivers, and wavelengths) under general traf-
fic patterns. Our model ignores any specific media access
protocol by assuming that each station has perfect knowl-
edge of the current status of all the resources in the system.
This assumption is reasonably good for the case of a packet
switch where the physical distance is small and stations can
learn the status of the resources from information broadcast
by a centralized controller. The model serves as an upper
bound on performance when the system is a network which
covers a larger geographical area.

The rest of the paper is organized as follows: In Section 2,
we describe the system configuration and assumptions to be
used in the mathematical model. Section 3 presents the anal-
ysis of networks with stations having multiple transmitters
and receivers for the uniform traffic case. A general model
is constructed in Section 4 and an iterative procedure is pro-
posed to solve it for the general traffic case. In Section 3, a
hot-spot traffic case is then studied using the general model.
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Section 6 gives the conclusions.

2 The System Model and the Solu-
tion Method

The system considered here consists of N stations attached
to a broadcast medium (fiber bus or star coupler). The num-
ber of wavelengths is equal to W. Node* { has t; transmit-
ters and r; receivers, each of which may be tunable to any
wavelength or which may be tuned to a single fixed wave-
length. We assume that a stream of packets arrive to node
i following a Poisson process with rate ); packets per unit
time. The packet length is exponentially distributed with
mean 1/pu, the same for all nodes. A packet arriving at
node 1 is addressed to destination node j with probability
25,1 < 4,5 < N. Define ¢ £ YN \zs1 <i < N as
the intensity of generated traffic that is destined for node
i. For a packet to be transmitted and successfully received,
the three following conditions must all be satisfied simulta-
neously: (i) there is a free wavelength in the system, (ii)
there is a free transmitter, at the source node, which can
access that free wavelength, and (iii) there is a free receiver,
at the destination node, which can also access that same free
wavelength. We assume there is no buffering at each node.
Upon a packet’s arrival, it is transmitted immediately if all
the three conditions above are true (remember that we have
assumed a “perfect” access scheme); otherwise the packet is
blocked (i.e. lost) immediately. We assume that each station
has complete knowledge of the status (busy or idle) of all the
wavelengths, transmitters, and receivers in the system. The
throughput of the system, which is defined as the average
number of successful packets transmitted per unit time, will
be used as the performance measure to compare systems with
different configurations and different traffic patterns.

Let the random variable K be the number of busy wave-

lengths in the system in steady state. Let py 2 Prob[K =
k],0 < k < W. Knowing the number of busy wavelengths
does not completely describe the state of the system since
we also need the current status of the transmitters and re-
ceivers of each node. However, we will make the approxima-
tion that K is a Markov chain. In this analysis, we will also
approximate many of the transition rates of this chain and
then provide an exact solution under these approximations.
Given that the system is in state k,0<k<W-1, and
given a specific free wavelength, we define ai') as the proba-
bility that an arriving packet at node i finds at least one of
its transmitters free which can access that free wavelength,
and ﬁ,&’) as the probability that a packet destined for node
J arriving at a source node finds, upon its arrival, a free
receiver at node j which can access that same free wave-
length. We recognize that these two probabilities should
properly be computed as a joint probability; we choose to
approximate them by assuming independence of the under-
lying events. Let o) denote the transition rate from state
k to state k + 1 due to the transmission of a new packet.

*The words node and station will be used interchangeably throughout
this paper.
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Figure 1: State transistion diagram for number of busy wave-
length in the system.

We first note that Aizy; is the rate of new packets generated
by node i and addressed to node j. The probability that
this new packet is successfully transmitted is approximately
equal to a;")ﬂg) . Therefore, under the assumption that all
the free wavelengths are equally favored for the transmission
of a new packet, o) can be calculated as follows:

N N
Ok = ZZ/\{I{jag)ﬂ,(‘J) 0 S k S w (l)

i=1 j=1

We see that the evolution of K forms a Markov chain
which is a birth-death process whose state transition diagram
is shown in Figure 1. Solving this birth-death process {10},
we have

k—1 )
Pk = po .-I;% (’—_*_‘lm 2

where
1

Wkl -1
it

The throughput of the system, S, which is also equal to
the average number of busy wavelengths in the system, can
be calculated by

w
S= Z kpi )
k=0

This, then, is the general setup for our solution. It remains
to find o, and hence S. This we do in the next two sections.

3 The Uniform Traffic Case

In this section we study the uniform traffic case where pack-
ets arrive to a station following a Poisson process with rate
A packets per unit time (the same for all stations). A packet
will travel from its source station to any of the N sta-
tions (including the source itself) with equal probability, i.e.,
Lij = %‘11 <4L,jisN (Setting Tij = 'IVIZT'I <4L,jSN,i#j
does not change the results below).

3.1 Tunable Transmitters and Receivers

Here we consider the case where each node is equipped with
4 (g < W) tunable transmitters and g tunable receivers, each
of which can tune to any of the W wavelengths. The a,(:)’s
and ﬁ,(:)’s are now the same for all stations by symmetry,
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Figure 2: State transistion diagram for tunable transmitters
and receivers.
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Figure 3: An upper bound, the W-server loss system.

which we denote by a; and B, respectively. To get the o
and B, we first note, given that the system is in state k,
that it is implied that there are also k transmitters and &
receivers currently busy in the system. When k < ¢, o
(Bk) is equal to one because there must be always a free
transmitter (receiver) at any node. For the cases k > ¢, since
there is a total of Ngq transmitters (receivers) in the system,
we know that the probability that any single transmitter
(receiver) is busy equals k/Ngq. Therefore, the probability
that all the transmitters (receivers) of a given node are busy
is approximately equal to (k/Ng)?. One minus this gives us
ak (Bx). Thus, we have the following approximation:

1 0<k<q-1
ak:ﬂk:{l_(ﬂki)q g<k<W-1 (5)

The transition rates o, can be calculated using Equations
(1) and (5), and the corresponding state transition diagram
is shown in Figure 2. Solving this Markov chain, we get

k
Pk—PO(Iz::) 0<k<gq
k-1 . 2
(Np)" i
—(— <k<
Pe=ro—py gl (Nq) g+1<k<W
where p = A/u and
-1
(Np)* (Np) 2
P= a E o H(l N %)
k=0 i=q

The throughput S can be calculated from Equation (4).

An achievable upper bound on the throughput can be ob-
tained by assuming all nodes have W tunable transmitters
and receivers. In this case, o = B = 1, which corresponds
to a W-server loss system [10] where each wavelength corre-
sponds to a server. Figure 3 shows the corresponding state
transition diagram. Solving this, we have

(Np)*

Pe=Po—pr— 0<k<W

where .
[Z (N P)k]

"“he blocking probability of this upper bound system equals

(Np)” /W
pw =
D_(Np)/kt

k=0

which is the well-known Erlang B formula [10).

In Figures 4 and 5 we plot the throughput versus the
total offered load for N=50, W=10 and N=50, W=50, re-
spectively. We show the ideal upper bound on throughput
as equal to the input load up to the point where the load
equals the total system bandwidth; beyond that point, any
additional traffic is clearly lost. We can see that a small ¢
(much smaller than W) is enough to produce a result close to
the achievable upper bound where ¢ = W. This is because,
in the uniform traffic case, the probability that more than a
few packets are going to the same destination at the same
time is very small, and only a small number of transmitters
and receivers are required at each node.

3.2 Tunability on One Side Only

In this section we consider the same uniform traffic case ex-
cept that each station now has only tunable transmitters
or receivers, but not both. We begin with the case where
each node is equipped with one tunable transmitter and f
(f < W) fixed tuned receivers. Each receiver in a station
is tuned to a different fixed wavelength and the receivers in
the whole system are tuned in a uniform way such that the
number of recievers tuned to each wavelength is the same,
which equals N f/W (assumed to be an integer).

By the same arguments as in the previous subsection, o
can be easily (but approximately) derived from Equation (5)
by setting ¢ = 1.

=1 k 0<k<W-1
Q) = N SKES

To get Pk requires a bit of different reasoning. For k < f, Bk
equals one because the total number of busy receivers in the
sytem is fewer than the number of receivers each station has.
To transmit a new packet, the source node can just tune its
transmitter to the free wavelength of any idle receiver at the
destination. For the case k > f, recall that all the receivers
are tuned in a uniform way over all the wavelengths; there-
fore, we know that, given that the system is in state k (i.e.,
there are currently k busy wavelengths), the probability that
the fixed wavelength at an arbitrary receiver at the destina-
tion is busy equals k/W. The probability that wavelengths
at the receivers of a given node are all busy is approximately
(k/W), and one minus this gives us S as follows:

_ 1 0<k<f-1
Be = 1-(&)Y f<k<sw-1

By switching the roles of transmitters and receivers in the
discussion above, we can easily obtain the a; and S for the
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Figure 4: Throughput versus total load Np. N=50, W=10.

case of multiple fixed transmitters and one tunable receiver
per node, which are equal to the 8 and o listed above, re-
spectively; the two systems are “duals” of each other. There-
fore, the state transition diagrams of those two cases are ex-
actly the same and is shown in Figure 6. Solving this Markov
chain under our approximation, we have

NG4S T
o= P g(l N) 1<k<f
= et 'ﬁ(l_i) ﬁ(l_(i)f)
o= g UG- pa W
F+1<ksW

where p = A/u and

7 N k k-1 i
P = [1+Z(_1£_)H(1_N)+

k=1 =0

SR [He-n)

The throughput can be calculated from Equation (4).
Figure 7 shows the case in which the number of wave-
lengths is small (W = 10) compared to the number of nodes
(N = 50) in the system. We see that there is an interval in
the light load range where multiple fixed receivers is better
than one tunable receiver because not many wavelengths are
in use and a station with multiple receivers can receive more
than one packet at a time. However, as the load increases
the average number of wavelengths in use increases too, and
it is better to have a tunable receiver than multiple fixed
receivers because the wavelengths those fixed receivers are
tuned to may be all in use (by other stations) and a given
station could not receive any packet even though not all of
its receivers were busy. Figure 8 shows the case where N
= 50 and W = 25 on a different scale. Once again we see

50 q =50 (Upper Bound) T F
-+ -
40}t ideal q=3 T+
‘é_ T tq=2
g +
5 30 | +
= *
E (3
= 20 T
model
10 + simulation
0 . N N N
0 20 40 60 80 100
Total Load

Figure 5: Throughput versus total load Np. N=50, W=50.
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Figure 6: State transistion diagram for tunability on one side
only.

the importance of going to a single tunable receiver at heavy
load. When the number of wavelengths becomes the same as
the number of nodes in the system (W = N = 50) as plot-
ted in Figure 9, wavelength is no longer the scarce resource
and the performance of having tunability on both sides is the
same as on one side only. In this case having multiple fixed
receivers is always better. Note the excellent match between
the results from our approximations and simulations in the
figures.

4 The General Traffic Case
4.1 The Model

Here we consider the general traffic case. We assume that
node i has t; tunable transmitters and r; tunable receivers
only. Let A\f and ¢} denote the number of packets success-

fully transmitted and received by node i per unit time, re-

spectively. Clearly, S = Zﬁl Al = Z,’i 195 a,(:) can thus be

approximated as follows:

. 1 0<k<t; -1

al) = { 1—(kX/LS)% t; < k < min(t:S/A, W —1)
0 min(t;S/\, W -1)<k<W -1
(6)
The quantity (k)}/S) is the average number of busy trans-
mitters of node i, given that the system is in state k.
(kX;/t:S) equals the probability that any single transmit-
ter of node i is busy given that the system is in state k.
Therefore, (kA;/t:S)% is approximately equal to the prob-
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Figure 8: Throughput versus total load Np. N=50, W=25
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Figure 9: Throughput versus total load Np. N=50, W=50
and one tunable transmitter per node. Rx = receiver.

Figure 10: State transistion diagram for U,

ability that all of node i’s transmitters are busy, and one
minus that gives us the af:). For those k’s where the value
(kX;/t:S) is greater than one, we set the a{’ to zero. The
ﬂ,(:) 's can be derived in a similar way:

. 1 0<k<r—-1
BY ={ 1—(k¢;/riS)" i <k < min(r;S/¢], W — 1)
0 mm(r;S/qb,‘, -1)<k<W-1
(7

Note that when the traffic is uniform, A}/S = ¢!/S =
1/N,1 < i £ N by symmetry, and Equations (6) and (7)
both reduce to Equation (5).

We now derive A}. Let U® denote the number of busy
transmitters of node i in steady state with probability mass
function (pmf) wuy 92
U® as a Markov process. Define Phim = Prob[K = k|K >

m] = pe/ ¥ jlmps. Let n %) be the transition rate for U®
(’)

= ProblUY) = m). We will approximate

from state m to state m+1. can be calculated as follows:

(,) '\t Z Zij Z ﬁk Pk|m
=1 k=m

The transition rate from state m to m — 1 is just myu, the
aggregrate rate at which any busy transmitter of node i will
finish its transmission first. Figure 10 shows the state tran-
sition diagram. Solving this, we have

where

i m—1 (i) -1
[HZ 1 (n+ 1)#]

m=1 n=0

Al can be obtained from

4
X =) muf) ®)
m=0

The ¢} can be derived in almost the same way. Let V®
denote the number of busy receivers of node i in steady state

with pmf v £ Prob[V® = m]. Define 7 as the transition

rate for V&) from state m to state m+1. 7 (') can be calculated
as follows:
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Figure 11: State transistion diagram for V¥,

. N w-1
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The transition rate from state m to m — 1 is just my, the
aggregrate rate at which any busy receiver of node i will
finish its reception first. Figure 11 shows the state transition
diagram. Solving this, we have

@ (')"I':f ™
o = T -
m = Il o

where

nom-1 ) 7L
) - ™
w = [1 +2 11 m]

m=1 n=0

¢; can be obtained from:

r
¢ =) mold 9
m=0
However, we do not really have the p;’s in the first place to
compute those A and ¢} because they depend on each other.
In the next subsection, we propose an iterative procedure to
solve for these steady state probabilities.

4.2 An Iterative Procedure

We define pr(n), \}(n), ¢} (n), uf:) (n), and ﬁ,(:)(n) as the val-
ues obtained for these quantities at the end of the nth it-
eration. We start with some initial estimates py(0), Af(0),
and ¢;(0). One simple initial estimate is to set py(0) =
1/(W+1),0 <k < W, A;(0) = }; and ¢;(0) = ¢,1 < i < N.
The iterative procedure is as follows:

1. Letn=1.

2. Construct a,(:)(n) and ﬂ,(:)(n) from A;(n—1) and ¢}(n—
1) using equations (6) and (7). Solve for pi(n) from
equations (1), (2), and (3).

3. With pi(n), af:) (n) and ﬂ,(:) (n), solve the Markov chains
in Figures 10 and 11 to get A\{(n) and ¢ (n).

4. If the difference between pi(n), X{(n), ¢}(n) and pi(n —
1), A{(n — 1), ¢}(n — 1), respectively, are less than pre-
specified thresholds, then stop. Otherwise, set n = n+1
and go to step 2.

We do not have proof of the convergence of the procedure
above. However, for all the experiments presented in the
next section, this procedure converges all the time, and the
solutions are very close to the simulation results.

5 The Hot Spot Traffic Case

Here we use the general model just described to study the
special case of a “hot-spot” traffic pattern where a large por-
tion of traffic is addressed to a specific node called the hot-
spot node. The other N — 1 nodes are called “plain” nodes.
Without loss of generality, let node 1 be the hot-spot node.
We assume all \; = A,1 < i < N. From the generated traffic
from all the nodes, a fraction of b is assumed to go to the hot-
spot node, and the rest goes to the other nodes uniformly,
i.e., g = b,:t,'j = (1 ——b)/(N— 1),1 <i<L N,2 Sj < N.
Each node has one tunable transmitter and one tunable re-
ceiver except node 1, which may have more than one tun-
able receiver. That is, ¢t; = 1,{ = 1,...,N,r; > 1, and
ri=1,7=2,...,N. The effect of various values of b and r,
on the system performance is investigated below.

Figure 12 shows the relationship between the throughput
and total load for the case of N=50, W=10, and r;=1. We
can see that as the bias, b, gets larger, the total through-
put of the system is degraded. This is because, while the
single receiver of the hot spot node is overloaded, there is
not enough traffic generated for exchange among the other
nodes.

Since the receiver of the hot spot node is now the scarce
resource, we next study the effect of increasing the number
of receivers at the hot-spot node. In Figures 13 and 14 we
plot the received throughput (i.e., 4}) of the hot-spot node
(node 1 in our example) versus the total load for the cases
of N=50, W=10, b=0.2 and b=0.8, respectively. We note
that, by increasing the number of receivers at the hot-spot
node, its throughput can be improved. However, as the load
increases, we see that the received throughput of the hot spot
node saturates at some value no matter how large a number
of receivers it has. This is because when the total load is very
heavy, the throughput of the system approaches W, and the
received throughput of each node saturates at some value
determined by the traffic imbalance. Putting in a lot more
receivers at the hot-spot node will not help further increase
its received throughput.

6 Conclusions

Optical fiber provides a huge amount of potential bandwidth
and the bottleneck to tapping this enormous bandwidth lies
at the electronic interface of the end stations. WDMA holds
great promise for achieving large-scale concurrency in an op-
tical fiber by allowing multiple communication pairs to ex-
change data on different channels simultaneously. In this pa-
per we first built a model to analyze the uniform traffic case.
We found that it is better to have both tunable transmit-
ters and tunable receivers than having only one or the other
tunable when the number of wavelengths is smaller than the
number of nodes (which is most likely the case in the near
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Figure 12: Throughput versus the total load Np. N=50,
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Figure 13: Throughput of the hot-spot node versus total load
Np. N=50, W=10, b=0.2.
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Figure 14: Throughput of the hot-spot node versus total load
Np. N=50, W=10, b=0.8.

future [11]). Also a small number of tunable transmitters
and receivers at each station is enough to produce perfor-
mance close to the upper bound. We then constructed a
model for systems with general hardware configurations and
arbitrary traffic patterns. An iterative procedure was pro-
posed to solve the model numerically. We used this model
to study a special hot-spot traffic case. We saw that traf-
fic imbalance could degrade the performance of the system.
Adding more receivers to the hot-spot node helps improve its
performance, but only to a limited extent determined by the
traffic imbalance. The match between the results from our
approximations and simulations was shown to be excellent.

References

[1] P. S. Henry, “ High-capacity lightwave local area net-
works,” IEEE Commun. Mag., vol. 27, pp. 20 — 26, Oct.
1989.

2

M. G. Hluchyj and M. J. Karol, “ShuffieNet : An appli-
cation of generalized perfect shuffles to multihop light-
wave networks,” pp. 4B.4.1 - 4B.4.12, Infocom ’88, Mar.
1988.

[3

H. S. Stone, “Parallel processing with the perfect shuf-
fle,” IEEE Trans. Comp., vol. C-20, pp. 153 — 161, Feb.
1971.

[4] J. A. Bannister, L. Fratta, and M. Gerla, “Topological
design of the wavelength-devision optical network,” pp.
1005 -1013, Infocom 90, Jun. 1990.

5

J. Labourdette and A. S. Acampora, “Wavelength
agility in multihop lightwave networks,” pp. 1022 - 1029,
Infocom ’90, Jun. 1990.

6

A. Ganz and Z. Koren, “WDM passive star - Protocols
and performance analysis,” pp. 9A.2.1 - 9A.2.10, Info-
com ‘91, 1991.

[7

M. -S. Chen, N. R. Dono, and R, Ramaswami, “A
media-access protocol for packet-switched wavelength
division multiaccess metropolitan area networks,” IEEE
J. Select. Areas. Commun., vol. 8, no. 6, pp. 1048 — 1057,
Aug. 1990.

[8] R. Ramaswami and R. Pankaj, “Tunability needed
in multi-channel networks: Transmitters, receivers, or
both?”, IBM Research Report 16237(#72046), 1990.

[9] I. Chlamtac and A. Ganz, “Design alternatives of asyn-
chronous WDM star networks,” pp. 23.4.1 - 23.4.6, ICC
’89, 1989.

{10} L. Kleinrock, Queueing Systems, Vol. I: Theory, John
Wiley and Sons, New York, 1975.

[11] C. A. Brackett, “Dense wavelength division multiplex-
ing networks: Principles and applications,” IEEE J. Se-
lect. Areas. Commun., vol. 8, no. 6, pp. 948 — 964, Aug.
1990.

340.1.7

11567



