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Abstract-In this  paper, we define  a  two-parameter  family  of  protocols 
designed for  multihop packet  radio  networks. We call these protocols 
rude-CSMA because  under  certain  circumstances, maximum throughput 
is obtained  when nodes, even  after  sensing  a busy channel, transmit 
packets  anyway  with  a  nonzero  rate.  The  performance of these protocols 
is analyzed for various  special and random  topologies. 

L 
I. INTRODUCTION 

ET us  first review the  operation  of  the CSMA protocol  as 
defined for  the single-hop environment. It is well known 

that CSMA [ 1 ] is an efficient  channel access protocol  for sin- 
gle-hop  packet  ratio  environments.  In  this  protocol,  nodes of 
the  network sense the channel  prior t o  transmitting  packets. If 
the channel is sensed busy,  the sensing node  refrains  from 
transmitting  (to avoid a  collision) and  reschedules  its  transmis- 
sion  according to  one  of several  strategies  until  a future  time. 
If the  channel is sensed idle, the  node  transmits  its  packet. 
Collision of packets  only  occur if two  or  more nodes,  after 
sensing an idle channel,  start  transmitting  packets  within a 
propagation  time  of  each  other. 

In  multihop  networks,  collisions'can  occur  for  yet  another 
reason,  namely,  because  of the  hidden  terminal  problem [ 2 ] .  
Because of multihop,  an  idle  channel  around the  transmitter 
does  not necessarily imply  that  the  channel  around  the  in- 
tended receiver  is  also  idle. As an  example,  consider the net- 
work of Fig. 1 where connectivity  is  shown  by the arcs  con- 
necting the nodes. If node 1 senses an  idle  channel and sends 
a  packet to  node  2,  the  packet will suffer a  collision if node 4, 
which is hidden from  node 1  because  it  is  outside  of  node  1's 
hearing  range, is transmitting.  This  hidden  terminal  problem 
decreases the  throughput  that is achievable using CSMA in a 
rnultihop  network. 

Rude-CSMA attempts  to gain back  someofthislost  through- 
put  by  transmitting  sometimes even if the  channel is sensed 
busy. The  motivation is that a  busy  channel  around  the  trans- 
mitter  does  not necessarily imply  that  the  intended receiver  of 
the packet  also  hears  a  busy  channel. To see that  this  policy 
might  improve the  throughput of the  system, again consider 
the case where node 1 has a packet  for  node 2 in  Fig. 1. If 
node 1 senses a busy  channel,  it  could be  from  node 3 which 
lies outside of the hearing range of node 2 ,  and  thus would not 
be responsible for causing a  collision at  node 2.  

To create a mathematical  model t o  analyze  such  a  protocol, 
we  will assume that  when  nodes sense the  channel t o  determine 
.if it is busy,  they  are given additional  information.  This  infor- 
mation is the  number  of  nodes  and  number of transmitting 
nodes  in  their  local  neighborhood.  Clearly,  this  assumption is 
unrealistic, but  this  does  not  influence  the main  result of this 
paper which  presents an  important negative result.  This  con- 
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Fig. 1 .  A sample  network. 

clusion  is that  the  protocol  that maximizes the  throughput of 
the  system  ignores  this  information.  The  exceptions to  this re- 
sult  occur  for  networks  which  are  not  likely to  occur  in  actual 
network  implementations. 

The  outline  of  our  paper is as follows. In  Section 11, we  de- 
scribe the rude-CSMA protocol  and derive equations  for  its 
performance. In Section 111, we provide  specific  results for  the 
networks we considered,  and  in  Section IV we  state  our  con- 
clusions. The  Appendix  contains  the  mathematical  details  for 
the  derivation  of  the  equilibrium  density  for  our  protocol. 

11. THE PROTOCOL 
We will define  the  state  of  the  network  at  time t ,  S ( t ) ,  to  be 

a binary  vector S ( t )  = ( s I ( t ) ,   s 2 ( t ) ,  .-, s n ( t ) )  where n is the 
number  of  nodes  in  the  network  (which is assumed to   be con- 
stant)  and s i ( t )  = 1 if node i is  transmitting a packet  at  time t 
and 0 otherwise.  Whenever node i is transmitting, ( s i ( t )  = l ) ,  
we  assume that  the  packet  transmission  time  is  exponentially 
distributed  with  an average duration  of l /p time  units,  and 
thus  that  the  rate  at which node i's transmission is completed 
is given by 

r '(s( t ) )  = 1-1. ( 1 )  

When  talking about equilibrium  states, we will drop  the t de- 
pendency  in  our  notation  and  write  the  state  and  its  compo- 
nents as S and si. We also define di = 1 - si. 

For  any  node i, there  exists a  subset of the  other  nodes  of 
the  network,  denoted  by Ai, which  it  can  hear.  These  nodes 
will be referred to as  being  neighbors  of node i. In  this  paper, 
we will assume that if node i can  hear  node j ,  then  node j can 
also hear  node i, and  thus if i € A i ,  then j E Ai .  We let I A i  I be 
the  number  of  elements  of A I .  In general, for a multihop  net- 
work, A i  is a proper  subset  of  all the  nodes  in  the  network. 
Thus, the  information  that i uses to  determine  when  it trans- 
mits  depends  only  upon  the  states  of  the  nodes  contained  in, 
Ai. For a given state S( t ) ,  suppose  that  node i has a packet 
which  is  ready to  be  transmitted.  The  number  of  nodes  that 
are  both neighbors of i and  transmitting is given by 

N1 ' (S( t ) )  = S j ( t ) .  
jEA i 

Likewise, the  number of neighbors not  transmitting in i's 
neighborhood i s  given by 
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We assume that N l i ( $ ( t ) )  and Noi(S(t))  are given to  a  node 
whenever  it  senses the channel.  According to these  values, 
node i adjusts the  rate  at which it  presents  packets to  the chan- 
nel. 'For  state S ( t ) ,  using  rude-CSMA, the  rate  at which node i 
transmits (assuming that s i ( f )  = 0) is given by 

roi(,y(t)) = y o X ~ o ' ( s ( ~ ) ) y ~ ~  ' ( ~ ( t ) )  (2) 

where x, y ,  and yo are  given network  parameters.  Thus,  for 
state S(t ) ,  the  time  between successive  packet  transmissions 
by  node i is exponentially  distributed  with  mean l / r o i ( S ( t ) ) .  
We can interpret (2) in the following  manner: yo corresponds 
to  the nominal arrival rate of  new,  relayed,  and  retransmitted 
packets  at  each  node of the  network. If the local  state infor: 
mation  had  no  influence  on  node i'q behavior (in terms of net- 
work  parameters,  this  corresponds to  x = 1, y. = l),   then yo 
would represent  the  rate  at which nodes  transmit  packets on 
the  channel,  independent of the  state of the  system.  This 
would be  identical  to  the,  offered  channel load if one were 
using the ALOHA protocol.  Theinfluence of the local  envirop- 
ment  on  node i's behavior is represented by  the values x and 
y .  Note  that ALOHA (x' = 1 ? y = 1) and CSMA (x = 1,  y = 0) 
appear as  special  cases so that rude-CSMA is a  generalization of 
these  two well-known protocols. 

The  state  vector  and  rates  defined  above  define  a  continu- 
ous  time,  finite  multidimensional  state Markov  process. A gen- 
eralized form of this  process can be  found  in [ 31. To optimize 
the  performance of the  network, we  need to  determine  the 
(x, y )  values that  maximize  the  expected  number of successful 
transmissions  over  a  unit  time  interval.  For  a given equilibrium 
state S, define U ( S )  to be the  expected  number of concurrent 
successful  transmissions for  that  state.  The value U(S)  can be 
calculated if the  traffic  and  hearing  matrix  for  the  system  are 
known. As an example,. suppose' in Fig. 2 that  nodes  are 
equally  likely to  transmit to  any of their neighbors..  Nodes  in 
Fig. 2 are  labeled (1) if they are  transmitters  and (0) otherwise. 
The value of U ( S )  is found  by calculating the  probability  that 
silent  nodes  in the  network successfully  receive a  packet  ad- 
dressed to them.  Thus,  node 2 in the figure is adjacent to  only 

. one transmitting node (node 1) which transmits in that direc- 
tion  with  probability 1/4. The  probability of a successful  trans- 
mission to  node 2 is 1/4, as it is for  nodes 3 and  4. In the same 
manner,  nodes 6 and 7 have a l / 4  probability of receiving 
node 5's transmission  successfully,  whereas  node 8 has no 
chance of receiving either  node 5's or  node 9's reception since 
they will collide. For  the  state'  shown  then,  the  expected suc- 
cess is 

U ( S ) = 3  - + 2  - =-.  
.( :) (:) : 

More  generally, let pii  be the  probability  that  when  node j 
transmits  a  packet, it sends  it to  node i. We then  calculate 
U(S)  as 

where 6; equals 1 if x = 1  and  equals 0 otherwise. Observe 
that U ( S )  measures the  expected  number of concurrent  trans- 
missions that are  received  successfully  when the system is in 
state S .  In  an  actual  packet  radio  network,  this is equivalent 
to assuming that nodes  send  a series of very short  packets 
when  they  transmit.  The use of this  mechanism to  calculate 
throughput was first  presented  in [4 ] .  We should'also  point 
out  that  a  model  with similar assumptions was studied  in [ 5 1  
in  which the  mathematical  model  corresponded to  a reversible 
Markov'  process that had  a  product  form  solution. In that 
work, CSMA  was the  protocol  studied. 

Fig. 2. Calculating U(S). 

Let n(S, x, y )  be  the  steady-state  probability of state S 
for  a given (x, y )  and denote  the set of all possible states  as a. 
In the  Appendix, we show that with  rate  equations  (1)  and (2), 
n(S, x, y )  1s given by 

n($, x, y )  = c p M ( ~ ~ x - ~ o ( ~ ) y ~ l ( ~ )  

where . 
n 

M ( S )  = si 

c = n(0, x, y)x- Bo (0)  

P = 7 0 / P  

i'= 1 

y o ,  x , y )  = x-Bo(0) x pM(S)x-Bo(S)y&(W [ SE's2 1 - l  

In  this  equation, C i s  a  normalization  constant, M ( S )  i s  the 
number of transmitters  in  the  network, Bo(S)  is the  number of 
pairs of nodes  in  the  network  that  are  both  adjacent  to (i.e., 
can hear)  each  other  and are not  transmitting,  and B ,  (S) is the 
number of pairs of nodes in the  network  that  are  both  adjacent 
to each  other  and also  are both  transmitting. Using this, we 
can  write the  expected  number of successful  transmissions in 
the  network as 

W X ,  = c w ,  x, Y)U(S) .  
S i n  

Naturally, we  would  like to  maximize  this  function over feasi- 
ble ( x ;  y )  values.  Besides the nonnegativity  of x and y ,  how- 
ever,  there is a  constraint  concerning  the average rate  at  which  a 
node  presents  packets to the  channel.  This average rate  cannot 
be  greater  than  the  'nominal  packet arrival rate yo. Rate  equa- 
tion (2) shows that  the  actual  transmission'rate is a function of 
S, and thus we  must  have the  followingflow consfraint: 

~O!(S)HJI (S ,  x, y )  < yo i = I , ? ,  ..., n. 
SE 52 

For  a given topology  and  traffic  matrix, we can thus  formalize 
the  mathematical  program P as 

Program P 

!x, vi SE s2 

subject to  

x > o  
vao 
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This is the problem  that we  will address in this paper. We note 
that  optimal ( x ,  y )  values  are functions of the  topology  and 
traffic  matrix of the  network.  To solve  program P, we used an 
exhaustive grid search  method  since  convexity,  properties  of 
the objective  function were found  to be  difficult to  establish, 
and  they also depend in each  case on  the  topology  and  traffic 
matrix.  For  the  examples  that  follow, we  will denote  the  opti- 
mal solution to  program P by U * ( p )  where p = yo/p. 

111. DISCUSSION OF RESULTS 
In this  section, we will discuss the results we obtained when 

P is  optimized  for  example  networks. We wrote  computer  pro- 
grams  which,  for  a given topology,  calculated U(S)  and n(s, x, 
y )  and the optimized P over all feasible (x, y )  pairs. Besides 
special  topologies  which we studied, we  also ran P for  con- 
nected  networks which  were randomly  generated  for  varying 
mean densities. As typical of most  Markovian  models, the  state 
space of the system  grows  exponentially  with the  number of 
nodes of the  network,  and  thus to  keep the program  compu- 
tationally  tractable, we restricted our  optimization  to relatively 
small networks. We have  chosen  here to  show  results  obtained 
for  a  six-node grid network  and  for  a  network  that was  ran- 
domly  generated.  The  results  for  these  networks  are  representa- 
tive of our  studies. In both  networks, we have  assumed a uni- 
form local traffic  matrix.  Results  for  other  topologies,  such  as 
rings  and tandems,  and  for  other  random  networks can  be 
found  in [ 61. 
A.  A Six-Node Grid Network 

In Fig. 4 we plot  the values of x and y that achieve optimal 
performance  for  the  network  of Fig. 3, which is a generalized 
version of the  network used to  motivate  this  work.  The curves 
for  the graph  in Fig. 1 show  similar  behavior.  These  curves 
have many  interesting  properties. First we observe that over 
the range of p = yo/p shown,  there  are  three  distinct  types of 
behavior.  For  very  small p values, p d 0.15, we see that x and 
U*(p)  increase rapidly, while y remains  very  small. The in- 
crease of U * ( p )  over  this  range is explained  by  the  fact  that 
for small p values, there  are very  few  transmissions,  and thus 
very  few  which  cause collisions, and thus increasing p tends to  
increase U * ( p )  in a  linear  manner. We see  this  behavior  clearly 
as p goes from  0.05 to 0.1 during  which U * ( p )  doubles  from 
about  0.35 to  about 0.6. As p continues to  grow  beyond  0.1, 
the increase is  less than linear  due to  some  collisions  in the 
network.  It is clear that over this range,  since there  are so few 
transmissions  in the  network,  the y parameter  of  rate  equa- 
tion (2) is noncritical. Using an  interactive  program we wrote 
to  determine  how U * ( p )  varied  as a  function of y ,  we found 
very little change  over all values of y ;  thus,  the  sudden increase 
in y at p 0.2 should  not  be  interpreted as demonstrating sin- 
gular  behavior. 

The  second  region of the graph,  from p = 0.2 to p = 0.35, 
will now  be explained.  First, we observe that  the  expected suc- 
cess rises only slightly over  this  range.  Although there  are 
more  transmissions  in  this  range,  there  are  also  more colli- 
sions  which  limit the  number  that  are successful. The  sudden 
increase of y at p % 0.2, as mentioned  previously,  should not 
be looked on as  being  as  singular, but  does  demonstrate  the 
increased importance of y’s effect  on the  throughput  of  the 
system.  Observe that over this  rangey < 1,  and  thus  from (21, 
this  parameter  acts  to  inhibit  transmissions  when  there is a 
neighboring transmitter  (although  not  to  the  extent  of  ex- 
cluding  such  transmissions).  This supports  our  conclusion  from 
the scenario  in the beginning that  sometimes  in  a  multihop 
network,  it is beneficial to transmit  even if the  channel is 
sensed busy.  The decrease of x over this range arises because it 
is no longer on  the  boundary of the feasible  region.  However, 
since x is  greater  than  1  in  this  region, we conclude that  this 
parameter  tends  to  increase  the  rate of packets  offered to  the 
channel  during idle channel  periods. 

Fig. 3 .  A six-node  grid  network. 
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Fig. 4. Curves  for the six-node  grid  network. 

Over the region p >, 0.35, U * ( p )  is again not  altered to  any 
great  measure. Both x and y decrease  now  in  an effort t o  pre- 
vent  collisions on the channel. As p becomes  much larger, we 
see that x < 1, which  indicates  that even the x parameter  tends 
to  act to  inhibit  the  number of packets on  the channel.  Over 
this  region, the flow  constraint of P is not  saturated  for  any 
node in the  network,  indicating  that  the  effective  transmission 
rate of packets on  the channel is  less than yo. Hence,  opti- 
mizing the  throughput of the  network  has  the  effect  of  limiting 
the flow of packets  in  the  network. We will explain the general 
shape  of the x curve  in the  next  section. 

B. A Seven-Node Random Network 
We now  report  on  the  results which  were obtained  when P 

was run  on  graphs which  were randomly  generated. Many such 
graphs  were  created,  with  varying  mean  densities,  and all such 
graphs  exhibited similar  behavior.  This  characteristic  leads  us 
to conclude that in a  random  multihop  network, over the con- 
tinuum of protocols  defined  by all possible (x, y )  pairs, opti- 
mum  performance is obtained  when y = 0. As stated  in  the In- 
troduction,  this  corresponds  to  a CSMA-type protocol.  From 
the  many  networks which  were  analyzed,  we  have  chosen one 
to  show  here. In Fig. 5 ,  we show a seven-node network  with  a 
mean  number of neighbors N equal to  2.28. The  corresponding 
set of C U N ~ S  are  shown  in Fig. 6. We see that  for low  values of 
p,  both U * ( p )  and x are  linear,  indicating  that  there  are  very 
few  collisions in the  network.  The  slope of U * ( p )  becomes 
nearly  zero  for p > 0.2, implying that  after  this  point,  the 
amount of  new successful  transmissions  in the  network is 
small in comparison to  the  number of collisions that arise 
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N - 2.205 

Fig. 5 .  A random  seven-node  network  with N = 2.285. 
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P 

Fig. 6. Curves for the  seven-node  random  network. 

from  the increased traffic  load.  The  shape of the x curve for 
p > 0.3 can be  explained  by first noting  that over this  range, 
the flow  constraint of P is not  saturated. Next  we  make  a 
definition.  Suppose  for  each  node i, we  investigate all state 
vectors having the  property  that i  and all its  neighbors,dj are 
silent.  Under  these  conditions, if isenses  the  channel, it will de- 
tect  that  it is idle and  offer  packets to  the channel  at  a  rate  de- 
fined  by the  protocol.  Let Zi be the set of all state  vectors 
satisfying  this  condition. We can then  define  the effective 
number of idle neighbors,  denoted  by N * ,  by  finding the 
average number of silent  neighbors  a  randomly  selected  idle 
node  has  when  it senses the  channel  prior  to  a  transmission. 
This  can  be  written as 

i S€Ii  

Because of topological  variations,  some  nodes  are  more  likely 
to  be both idle  and  surrounded  by idle neighbors than  others 

(in  fact,  the  probability is decreasing  with the  number of 
neighbors),  and thus  in general, N* # N. Define f to  be the 
average time  a  random  node  in'the  network waits before  trans- 
mitting when it hears  an idle channel.  Since U*(p) does not 
vary  much  over p > 0.3, i t  is not surprising to  find  that x 
varies  as  a function of p to  preserve the  fraction of time  nodes 
transmit when  sensing an idle channel.  This  has  been  verified 
by observing  (using an interactive  program)  that the  probability 
distribution  for  state  vectors  does  alter  significantly as p ranges 
greater  than  0.3  for  optimized x values. We thus can  equate 
rates to  obtain 

pxN* = l/f. 

We can  solve for f and N* by  choosing two  points  from  Fig. 6 .  
At p = 0.72, we'have x = 1, and  thus  can  write 0.72 = l/f or 
f = 1.36. At p = 0.32, we have 0.32  (1.8)N* = 0'.72, which 
implies  that N* = 1.4.  Thus, we can  write x as a  function  of p 
as 

I .  x  =(l/fp)'lN* (0.72/~)~.~' p > 0.3. (3 ) 

Equation  (3) was  used to generate the second  curve  in Fig. 6 
and  we  see  a  relatively  close  match.  In  general, then,  for  a 
CSMA environment, we can  write  a  general  equation  relating 
x with p as 

x = (l/fP)l/N*. 

Intuitively,  for  the  graph of Fig. 5,  we  would expect N* < N  
since  nodes  having the greater  number  of  neighbors,  node  4 
for  instance, have  a much smaller probability of being both 
idle  and  surrounded  by idle neighbors than a  node, say node  1, 
that has  far  fewer  neighbors. 

Iv. CONCLUSIONS 
In  this  paper, we  have  defined  rude-CSMA  which is a  two- 

parameter  family of protocols  for  multihop  channel access. 
This  family of protocols  has  been  shown  to  include  both 
ALOHA  and CSMA as special cases. The  optimum  performance 
of rude-CSMA  was  presented for  two sample  networks. In the 
six-node grid network, we showed  that  in the  optimal  solution, 
nodes  transmit  with  a  nonzero  rate even if they sense  a  busy 
channel.  This  explains  the  appelation  rude  that we have given 
the  protocol. In the  more realistic case  of random  networks, 
however,  optimal  performance  was  obtained  when the  proto- 
col  used  was CSMA with  optimized  channel  input  rates.  Thus, 
we must  come to  the  interesting  conclusion  that  for  practical 
networks, rude-CSMA is not  that  rude  after all. 

APPENDIX 
In this  Appendix, we will determine  a  formula  for n(S, x, 

y ) ,  and  this will permit  us t o  explain the  particular  definition 
that was  needed  in the main  body of the paper  for the  rates 
defined  in  (1)  and  (2).  It  turns  out  that  with  these  rate  de- 
finitions,  determining  the  steady-state  probability  distribution 
for  any given topology is mathematically  tractable  because the 
Markovian  process  defined by  these  rates  defines a reversible 
process [7]. Intuitively,  a reversible  process X ( t )  is one  in 
which the  direction of time  has  no  effect on the  statistics of 
the process,  and thus X ( t )  and X ( - t )  have the same  probability 
distribution.  Finding closed form  solutions  for reversible 
processes is simplified  because  reversible  processes  satisfy  de- 
tailed balanced  equations.  Let n(S) = n(S, x, y )  be  the steady- 
state  probability of state S, and  let q ( S ,  S') (we will shortly 
define  this  for  our  system) be the  rate  at which transitions 
between  states S and S' occur.  The  detailed  state  balance 
equations  are 

rI (S)q(S ,  S') = rI(S')@, S) VS, S'. (A.  1) 
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In  general,  Markov  processes  satisfy  global  balance  equations 
that  equate  the  total  probability  flux  entering  a  state to that 
leaving the  state.  These  equations  state  that 
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(A.2) 

We can  depict  (A.2)  in  Fig. 7 where  the  equation  states  that 
the  net  probability  flux  across  the  cut is zero.  For reversible 
systems, ( A . l )  shows that  the  net  flow  across  arcs  connecting 
any  two  states  (the  cut  in Fig. 8) is equal to zero.  Equation 
(A.l) can  be  used to  simplify  finding  closed form  solutions if 
reversibility  can  be  proven,  and  a  useful  tool to  do this is 
Kolmogorov's  criteria. 

Theorem  (Kolmogorov's  Criteria): Let SI, S 2 , '  e-, S k ,  
Sk+ l  = S1 be  any  cycle of states.  Then  a  Markov  process  de- 
fined  over  these  states is reversible if and  only if the  rate 
transitions satisfy 

4(S', S 2 ) q ( S 2 ,  S 3 )  .*. q(Sk-1 ,   Sk )q (Sk ,  Sk+') 

= 4(Sk+' ,   Sk)q(Sk,   Sk-  1 )  ... q(S3 ,  S 2 ) q ( S 2 ,  SI). 

To  determine n(S, x, y )  for  our  system, we  will  first  need to  
make  some  preliminary  definitions.  Let Ti be  an operator 
acting on  state S which complements  the  ith  component;  thus, 

T ~ ( s )  = (SI, $ 2 ,  ..., si- 1, d i ,  si+l,  ...) s n )  

and we  will say a  transition is a 0 -+ 1 transition if si = 0, and 
for some i ,  we  have T&S) = S' (1 + 0 transitions  are  defined  in 
the analogous  way). Using this, we can  define the  transition 
rates  for  our  system  as 

We can  now  prove a  lemma  that will be  used to  show that  the 
process  defined  by  rate  equations  (1)  and ( 2 )  is reversible.  To 
avoid any possible confusion, we should  point  out  that 1 X I 
denotes  the  number of elements  contained in X if X is a  set, 
and is the  absolute value  of X is X is a real number. 

Lemma: For  any  state S,Nii(S).= IBi(S)  - B i ( q ( S ) ) I .  
Proof: For  a given j ,  

Bj(S) = I { { j ,  k}l k E Ai, si = sk = i} I 
+ ~ { ( m , n } ( m , n # j , m € A , , s ,  = s n = i } l  (A.3a) 

Bi( T,(S)) = I { { j ,  k }  I k E Ai, = sk = i }  I 
+ I { { m , n } l m , n f i , m ~ ~ . , s ,  =sn  = i } l .  

(A.3b) 

The  second  summandsin  each of (A.3a)  and  (A.3b)  are  identical 
and thus cancel  in I Bi(S)  - Bi(Tj(S)) I .  Only one  of  the first 
summands can be  nonzero since either si = i or = i, and  thus 

' I Bi(S) - Bi(S)Tj(S) I 
= I { { j , k } ( k E A i , s i = s k = i }  

- { { j ,  k }  I k E Ai, Si = sk = i} 1. 
Since we are  taking the  absolute value of the above  expression, 
its value does  not change if we assume that si = i and  write 

I BdS)  - Bi(q(S))  I 

= l { { ~ , ~ } ~ k ~ A , , S k = i } ( = ~ { k E ~ ~ ( S k = i } ~ = ~ ~ i ( ~ ) .  

Fig. 7. 

Fig. 8. 

Observe that  for  a  known 0 -+ 1 transition involving node j ,  we 
can  eliminate  the  absolute value sign in the above to get 
Noi(S)  = Bo(S)  - BoTi(S). In a like manner, if node j is  in- 
volved in a 1 + 0 transition, we have N I J ( S )  = B l ( T j ( S ) )  -- 
B 1 ( S ) .  We are  now in a  position  to prove that  the Markov 
process  described before is reversible. 

Theorem: The Markov  process  described  by rate  definitions 
(1)  and  (2)  defines  a reversible  Markov  process. 

Proof: We will show  that Kolmogorov's  criteria is satis- 
fied. For  any  cycle of states SI, S 2 ,  --, Sk- = S' , Kolmo- 
orov's  criteria  are trivially satisfied if S'+l Z Tj(S'),  i = 1,2, 
-; k for all f since the  probability  of  two  or  more  components 
of Si and S I + 1  differing is zero.  This  follows  from the  fact  that 
the process is continuous  in  time.  Thus, assume that  the cycle 
of states  consists of single component  transitions.  Since  there 
are  only two  types of transitions, all cycles  must contain  an 
even number of states.  Let S ' ,  S 2 ,  -, S 2 m ,  S Z m + l  = S1 be 
such  a  sequence.  Let 

\k, "q(S1 ,  S 2 ) q ( S 2 ,  S 3 )  ... q ( S 2 m ,  S 2 m + l  1 
\k2 = q(SZm+',  S 2 m )  .*. q(S3 ,  S2)q(S2, SI). 

We .must  show  that,.\kl = \k2,  and we  will refer to  their cor- 
responding  sequences  as  the  forward  and  backward  sequence, 
respectively. We first note  that  there is an  equal  number of 
0 -+ 1 and 1 -+ 0 transitions  in 91 and \k2 since the  state se- 
quence is circular. Using the  rate  equations q(S ,  S ), we can 
write \ki = pmyom@i where @i containsall  the  factors of x and 
Y .  We thus must  show that  Q1 = @ 2 .  We will first concentrate 
on  the  exponent of x in  these  equations. We will first make  an 
observation  about  the  two  sequences \kl and \ k 2 .  Since they 
are both cyclic  and  reversals of each  other,  a 0 + 1  transition 
for S i  + Si+l in \kl corresponds to  a 1 + 0 transition Si+' -+ 
S' in \ k 2 .  Define the  two sets: 

c1 ={(Si, Si+') 
i = 1,  2, -., 2m I 3 jT i (S i )  = Si+1, s,' = 0) 
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where sii is  the  jth  component of state Si. In  words, C1 con- 
tains  the 0 + 1 transitions  for  the  forward  sequence and C2 
contains  the 0 + 1  transitions  for  the  backward sequence. The 
x exponent will only change due  to  these 0 + 1  transitions. 
Since Cl only  contains 0 .+ 1  transitions, we can  write,  using 
the  lemma,  the  exponent of x in the forward E ,  and  backward 
E2 sequences  as 

Suppose  now  that Si,  S i + ] ,  -, Si+k is a  subsequence of 
states  from  the  forward  sequence  such  that (SI, S i + , )  E C,, 
j = i, i + 1, .-, i + k - ‘1. Since the  portion of E ,  for  this se- 
quence  alternates sign, the sum  telescopes,  and we can  write 
for  this  subsection 

j=i+k- 1 

& ) ( S i )  - B,(Si+l) =Bo@’) - BO(S’+k). 
j =  i 

With this  in  mind, we see that  to calculate E, ,  we only have to  
look  at  sections in the forward  sequence  where  a  change  in the 
type (0 + 1 to  1 + 0) of state  transition  occurs.  Thus,  let us 
define , S I i ,  i = 1,  2, -., 2k,   2k + 1  with S ’ 2 k + 1  = S’I to  be  the 
places  where  such changesin  the  types  of  transitions  occur. To 
be  precise, if S ’ 2 n - 1  = Sz and S f Z n  = Si+k,  then ( S i - ] ,  S i )  @ 
CI,  (S i ,   S i+ , )  E C1, j = i, i + 1, ..a, i + k - 1, and (Si”k, 
S z + k + l )  @ C1. Using this, we can then write Ei as 

E ,  = [B,(S’’) - B ~ ( s ’ ~ ) ]  + [ B ~ ( s ’ ~ )  - B ~ ( s ’ ~ > ]  

+ ... + [Bo(S’2k-1)  - B o ( S ’ 2 k ) ] .  

In  a  like  manner, we can  write E,  as 

E2 = [ B 0 ( S f 1 )  - Bo(S’2k) ]  + [ B o ( S ’ 2 k - 1 )  

- B ~ ( s ‘ ~ ~ - ~ ) ]  + ... + [ B ~ ( s ’ ~ )  - B ~ ( s ’ ~ ) ] .  . 

Rearranging  these  sums  shows that E l  = E,.  
The  proof  that  the y exponents of a, and a2 are  identical 

follows  from  a  similar  argument.  One  would  define  analogous 
sets to C, and C2 above that had all the 1 + 0 transitions  and 
proceed  in  an  identical  fashion.  This  concludes  the  proof  that 
the process is reversible. 

Knowing  that the Markov  process is reversible  allows  us to  
use the  detailed  balance  equations (A. 1) to  prove the following 
theorem.. 

Theorem A . l :  The equilibrium  probability  for  state S with 
transition  rates  defined  by (1 ) and (2)  is given by 

(A.4) 

n 

M(S) = si 
i= 1 

c = n(0, x ,  y ) x - B o ( O )  

P = Yo/P 

Proof: To avoid  cumbersome  notation,  denote n(S, x ,  
~1 by II(S). Since the process is reversible, we can  use the de- 
tailed  balance  equations to  state 

If si = 1, we can  write (A.5)  as 

which,  by using the  lemma, can be  rewritten  (for  the case of a 
1 -+ 0 transition) as 

s.  = 1. I (A.6) 
We can  use this  relationship to write n(S) in  terms of n(0) by 
telescoping  a  product of rate  ratios.  Suppose i,, i 2 ,  i3 ,  . * e ,  iMis) 
are the indexes of S which  are  equal to  1.  Define the followmg 
state  operator: 

Fo = 1 

F .  , = T . . F .  I -  , i = 1,2,-,M(S). 

Observe that F o ( S )  = S and F M ( S )  = 0 (a Vector of all Zeros). 
We can  then  write (A.5) as 

which  can  be simplified by using (A.6)  to 

M ( S ) -  I 

M ( S ) -  1 

~1 (Fi(S))--B 1 ( ~ i + l  (8)) 
i= 0 

‘ Y  

These  sums  telescope,  and we are  left  with 
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We can de termine  n(0) by using the normalization constraint 
to de termine  the equation f o r  n(0) given in the s ta tement  of  
Theorem A. 1. 
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