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Optimal Update Times for Stale Information
Metrics Including the Age of Information

Chris Ferguson and Leonard Kleinrock , Life Fellow, IEEE

Abstract—In this paper we examine the general problem of
determining when to update information that can go out-of-
date. Not updating frequently enough results in poor decision
making based on stale information. Updating too often results
in excessive update costs. We study the tradeoff between having
stale information and the cost of updating that information. We
use a general model, some versions of which match an idealized
version of the Age of Information (AoI) model. We first present
the assumptions, and a novel methodology for solving problems
of this sort. Then we solve the case where the update cost is fixed
and the time-value of the information is well understood. Our
results provide simple and powerful insights regarding optimal
update times. We further look at cases where there are delays
associated with sending a request for an update and receiving
the update, cases where the update source may be stale, cases
where the information cannot be used during the update process,
and cases where update costs can change randomly.

Index Terms—Information decay, age of information, optimal
update times, out-of-date information, stale information, update
frequency.

I. INTRODUCTION

MANY forms of information are constantly changing
or going out-of-date over time. Examples include

weather reports, stock quotes, web pages, data files, medical
test results, traffic information and much more. Getting this
information to where it needs to be and keeping it as up-to-date
as practical is a challenging task. There has been considerable
research for particular models regarding updating out-of-
date information in which sources send time-stamped status
updates to interested recipients. These applications desire
status updates at the recipients to be as timely as possible. In
this paper we model the declining value of information as it
decays and solve for the optimum time to update information
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that has gone stale. The optimal update time depends on the
value of the information to the user, as well as the cost of
obtaining an update. This general problem and our solution
of determining when to optimally update information as it
goes out-of-date was reported by us earlier in [1]. Subsequent
to our model, a related end-to-end metric of staleness, called
Age of Information (AoI), has been reported extensively in the
literature [2], [3]. Similar to us, AoI addresses optimal update
issues including threshold-based policies. These have been
reported in [4], [5], [6] for energy harvesting, for example.
We analyze some simple versions of that AoI metric as
well as more general metrics. As mentioned above, there are
many applications that face this problem. Such applications
include: updating automobile traffic information [7], when
to repeat a measurement of atmospheric data for weather
forecasting [8]; determining the optimal time to update routing
tables in data networks [9]; when to update medical testing
(such as cancer screenings, mammograms, infectious disease
testing such as COVID-19 tests, etc.) [10]; updating stock
prices [11]; updating a transaction database [12]; updating
data regarding a security or surveillance system [13]; updat-
ing cached pages [14]; refreshing website data [15]; updating
the relative position of drones in a swarm [16]; updat-
ing measures of reputation [17]; status update policies
under an energy harvesting setting [4], [5], [6]; and many
more. These applications range over a wide variety of
systems.

We consider a number of different models. These models
are relatively simple and lead to uncomplicated closed-form
expressions that result in intuitive understanding of the under-
lying behavior. In Section II we state our basic assumptions.
Then in Section III we consider the simple case where
the update cost is fixed and we know the value of the
information as a function of how stale it is. In Section IV,
we expand our model to include the AoI metric and show
when best to initiate an update. In Section V we look at
the case where there are delays associated with requesting an
update and receiving it and therefore the received information
starts somewhat out-of-date and also where the information
source itself may be out-of-date. In Section VI we assume
there is no gain during the update process. In Section VII
we introduce variable update costs. In Section VII-A we
consider cases where users become intermittently disconnected
and are unable to receive updates, and in Section VII-B
where users intermittently move between states where the
cost is low and high. Finally, Section VIII provides a short
conclusion.

c⃝ 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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II. ASSUMPTIONS

The primary assumptions we use are:
1) There is a finite cost C > 0 of updating a given piece of

information.
2) There is a value per unit time associated with having

this piece of information, and this value changes over time
depending on the amount of time, t, since it was last updated.
This value we denote by f (t). The units of cost and value are
assumed to be the same, e.g., dollars.

3) f (t) is a non-negative monotonically non-increasing
function.1

4) For Section III, we further assume2 that limt→∞ f (t) = 0.
5) Updates occur immediately upon being requested.3

In the first assumption above, C is the actual cost of
obtaining an update. As examples: for COVID testing, it is the
dollar price of the test; for updating routing tables, it is the cost
in dollars for using resources to process the path information;
for updating a remote file cache, it is the bandwidth cost in
dollars plus any cost the server may charge for the update.
In some applications, the cost C is not easy or obvious to
determine, such as updating weather data. For the AoI models,
a specific cost is not usually addressed, but rather, the focus
is typically on the timeliness of status updates, which may
degrade due to congestion if updates are generated too often.

In the second assumption above, it can be much harder to
evaluate f (t), namely, the instantaneous benefit rate resulting
from having the information that is t units old. As examples:
for COVID testing, it is the rate of value obtained for
limiting the spread of the infection and improved treatment
by knowing the test results; for updating routing tables, it is
the instantaneous dollar value of improved response time; for
updating a remote file cache, it is the instantaneous dollar
value to the network for having access to the cache.

Assumptions 2 and 3 are very important.
Assumption 2 states that there is a value for holding on to
a piece of information over time which depends on how
out-of-date the information is. If the information was last
updated at time 0, then the accumulated value received for
having this information from t1 to t2, (where 0 ≤ t1 ≤ t2)
is

� t2
x=t1

f (x)dx. Assumption 3 states that the instantaneous
value of the information, f (t), cannot increase over time as
the information goes further and further out-of-date. Thus, an
older piece of information can never be more valuable than
a newer piece. Furthermore, each update subsumes all past
updates in that no past updates have any value once a new
update is received, i.e., it is a Markov process. We rely on
this part of Assumption 3 in order for us to prove our main
Theorem 1. The idea of information giving value over time
is an innovative way of looking at information; we point out
that a special case of this is the AoI metric (which can take
on negative values as information goes out-of-date) to which
we extend our analysis in Section IV.

Example 1: As stated above, in practice it may be difficult
to come up with the function f (t). Here we give a real-world
example where f (t) can be easily determined. Consider the

1In Section IV we allow f (t) to be positive and/or negative.
2In Section IV we relax this condition.
3In Section V we relax this assumption.

Fig. 1. Instantaneous Value Gained and Accumulated Value Gained Over
Time Since the Last Update.

case of a cache server that can store local copies of files
received from a host. The files on the host are subject to
random modifications at a Poisson rate. When the cache server
sends a request to update its local copy of a file, it obtains the
latest version of that file from the host. Consider a particular
file which costs C to update. Assuming that the value per
unit time of the cached file is equal to the probability that
no modifications have been made to the source file since the
last update, then f (t) = e−ρt, where ρ is the Poisson rate of
modifications for this file. This function is graphed in Figure 1
along with the accumulated value gained since the last update
for ρ = 1. The decreasing curve is the instantaneous value
of the information, and the rising curve is the accumulated
value gained since the last update, which is the integral of f (x)
from 0 to t.

III. PROBLEM STATEMENT AND SOLUTION

Given that we know C and f (t), when and how often should
a piece of information be updated? Let t be the amount of
time since the last update was received. We seek to find the
optimum time to update (defined as t∗) that maximizes the
average value gained per unit time between updates. Once an
update is received, this repeating process starts all over again
with f (t) starting at its orginal (now updated) value, and as the
new information goes out-of-date, one must once again decide
when to update. Our main result from [1] is in the following
Theorem:

Theorem 1: To maximize the average value gained per unit
time, a piece of information should be updated as soon as t
satisfies

−C +
� t

x=0 f (x)dx

t
≥ f (t). (1)

(this value being t∗) where t is the time since the last update.
However, if C is so large such that Eq. (1) is never satisfied,
then one should never update.4

Proof: The cost incurred is the cost of one update, C. The
total value gained by time t is the integral of the instantaneous
value of the information from the time it is received to

4We examine when the condition is satisfied below in Theorem 2.
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time t, namely
� t

x=0 f (x)dx. The objective function we seek to
maximize is the average gain per unit time which equals the
total information value gained minus the update cost, divided
by the time, or in this case5

−C +
� t

x=0 f (x)dx

t
. (2)

To find t∗, the value of t that maximizes this average gain
per unit time, we take the derivative6 of this expression and
set it equal to zero, namely

C

t2
−

� t
x=0 f (x)dx

t2
+ f (t)

t
= 0. (3)

Multiplying by t and rearranging terms yields the following
equation defining the optimal value of t, namely, t∗

−C +
� t∗

x=0 f (x)dx

t∗
= f

�
t∗

�
. (4)

We now show that the objective function in Eq. (2) has a
unique maximum value by proving that its slope is positive
when t < t∗ and is negative for t > t∗. We introduce the
following definitions:

A(t)
△=

� t

x=0
f (x)dx. (5)

A(t) is the accumulated value gained by time t.

D(t)
△= A(t) − tf (t). (6)

Examining dD(t)/dt we note that

dD(t)/dt = d
�
A(t) − tf (t)

�
/dt,

= dA(t)/dt − f (t) − tdf (t)/dt,

= f (t) − f (t) − tdf (t)/dt.

But by Assumption 3 in Section II, df (t)/dt ≤ 0 which
shows that

dD(t)/dt ≥ 0. (7)

We denote the objective function given in Eq. (2) by Q(t).
Note that the left-hand-side of Eq. (3) is the derivative of
our objective function Q(t). Multiplying this derivative by t2

(clearly this does not change the sign of the derivative) we
get C −

� t
x=0 f (x)dx + tf (t) and from Eqs. (5) and (6) this is

merely C−D(t). Since C is a constant and D(0) = 0 and from
Eq. (7) D(t) cannot decrease with t, we have

dQ(t)/dt =

⎧
⎨

⎩

> 0 if C > D(t)
= 0 if C = D(t)
< 0 if C < D(t).

(8)

This shows that Q(t) has a unique maximum if limt→∞ D(t) ≥
C. Further, from Eq. (4) we know that the maximum occurs
at t = t∗ for which D(t∗) = C, that is,

dQ(t)/dt =

⎧
⎨

⎩

> 0 if t < t∗

= 0 if t = t∗

< 0 if t > t∗.
(9)

Hence, the objective function has a unique maximum.

5A discrete version of Eq. (2) can be found in [18].
6If f (t) is discontinuous at t = x, then we consider f (x) to hold all values

between f (x−) and f (x+).

Fig. 2. Instantaneous Value Gained and Average Value Gained Per Unit
Time Since the Last Update Including the Update Cost.

We repeat that if Eq. (4) is never satisfied, then no updates
should ever take place (and the exact conditions are addressed
in Theorem 2). Also note that since f (t) may be constant over
an interval (t0 ≤ t ≤ t1), if t∗ occurs in this interval, then
all values of t in this interval are optimal. In such a case, we
choose to use the earliest, t0, as t∗.

It is intriguing to note that t∗f (t∗) is the net value gained per
cycle and the net value gained per unit time over each cycle is
f (t∗) which we denote by V . Updates should be performed to
maximize the average gain per unit time which equals the total
information value gained minus the update cost, divided by
the time, namely, our objective function, [−C+

� t
x=0 f (x)dx]/t.

See Figure 2. We have just proven in Eq. (4) that this function
is at its maximum when its value equals f (t).

Figure 2 shows a plot of the sample function f (t) = e−t

and also the average value gained per unit time since the last
update, assuming C = 0.2, that is, [ − 0.2 +

� t
x=0 f (x)dx]/t =

[0.8 − e−t]/t. This average value function starts at −∞ since
C > 0 and we are dividing by time which starts at zero.
According to our theorem, this function hits its maximum
when it equals f (t). This can be explained by understanding
the two functions. At the point where they cross, the average
value gained per unit time since the last update (including
the update cost) equals the current instantaneous value of
the most recent update, f (t), i.e., the value currently being
gained per unit time. Since f (t) is non-increasing, at no time
t beyond the crossing does the information have a greater
instantaneous value f (t) than it does at the crossing. Thus,
since [−C+

� t
x=0 f (x)dx]/t = f (t) at the crossing, this objective

function must decrease continuously past the point where it
meets f (t). Furthermore at any point before the two lines meet,
the instantaneous value gained by having the information is
greater than the average value gained per unit time. Thus as
long as, f (t) > [−C +

� t
x=0 f (x)dx]/t, waiting a little longer

without updating increases the average value gained per unit
time over the period of one update. Furthermore this shows
that there is only a single local maximum value as shown in
the proof of Theorem 1. This is true for any monotonically
non-increasing f (t) and positive C.

Of interest is the following Corollary which shows that there
is a class of functions including f(t) all of which produce the
same t*.
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Fig. 3. The Recurring Update Process.

Corollary 1: For a given C, if t∗ is the optimal update
time for f (t), then t∗ is also the optimal update time for all
non-increasing g(t) where g(t∗) = f (t∗) and

� t∗
x=0 f (x)dx =� t∗

x=0 g(x)dx.

Proof: From Eq. (4), we see that if
� t∗

x=0 f (x)dx =� t∗
x=0 g(x)dx and f (t∗) = g(t∗), then Eq. (4) clearly holds for

such g(t).
We can also see from this Corollary that the future form

of f (t) beyond t∗ is irrelevant. Nothing that happens after t∗

can ever affect the value of the optimal update time, t∗. It is
interesting and useful to note that one does not even have to
know the function f(t) ahead of time. One only needs a way
to measure it on the fly, and as soon as the current rate of
productivity goes below the average rate since the last update,
the next update should be performed. Furthermore, the shape
of f (t) prior to t∗ is irrelevant as long as

� t∗
x=0 f (x)dx = C +

t∗f (t∗).
Recall that the process of updating information is recurrent.

After the update is obtained, the process starts over. When this
new copy becomes far enough out-of-date, i.e., after another
t∗ time units, it is replaced by a newer (and, according to our
model, an instantaneous) update. Figure 3 is a graph of the
value per unit time of the current copy on the positive Y axis.
On the negative Y axis, we see the cost paid every t∗ time
units for each new copy.

As shown in Figure 4(a), this function has some interesting
properties. The average value, V , gained over time under
optimal updating, is equal, by Eq. (4), to f (t∗), where t∗ is
the optimal update time. Rewriting Eq. (4) we have C =� t∗

x=0 f (x)dx − f (t∗)t∗. But since f (t∗) = V , we have that

C =
� t∗

x=0(f (x) − V)dx. Figure 4(b) shows different curves
for the different values of C. Note that t∗ always occurs
at the peak of [

� t
x=0 f (x)dx − C]/t. The higher the update

cost, the less frequently updates should be performed, and the
less value that can be extracted from a piece of information.
Figure 5(a) shows the relationship between C and t∗ for our
sample function f (t) = e−t. As expected the larger the cost
of obtaining an update, the longer one waits between updates.
Also if the update cost is greater than the total value possibly
gained by a copy over time, in this case, if C >

� ∞
x=0 e−tdt = 1,

then t∗ = ∞ and of course no updates are made. Figure 5(b)
shows the relationship between C, and the value gained per
unit time using the optimal update times.

As we promised in Theorem 1, we now address the issue
as to when Eq. (4) has a solution.

Fig. 4. Some Interesting Properties and Behavior.

We define

A
△= lim

t→∞ A(t) (10)

In Figure 6 we show D(t), A(t) and A graphically. Note that
A(t) is the total value gained by having a new update from
time 0 to time t. Further, A is the maximum gain by holding
an update forever.

Using Eq. (6), we can rewrite Eq. (4) as

D
�
t∗

�
= A

�
t∗

�
− t∗f

�
t∗

�
= C. (11)

We now inquire under what conditions Eq. (11) has a
solution for t∗.

Theorem 2: We break this theorem into two parts:
Part a: If A < ∞, then t∗ exists iff A≥ C.
Part b: If A = ∞, then t∗ always exists.
This Theorem is proven in the Appendix.
Let us consider two examples related to Theorem 2.
Example 2: We begin with a simple example illustrating

Part a where f (t) = ae−ρt. For this function, we see that
A = a/ρ. For cases where a/ρ < ∞ then Theorem 2 Part a
applies and so there exists a finite t∗ iff A ≥ C.

In Figure 7 we show a particular case of Example 2 where
we have selected the same parameter values as from Figure 2,
namely, a = 1, ρ = 1 and C = 0.2. In this case, A = 1 and
since C = 0.2, we have A ≥ C and t∗ = 0.825.

Example 3: As another example, let us illustrate Part b
by considering f (t) = a/

√
t. For this function, we see that
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Fig. 5. Variation with C for f (t) = e−t .

Fig. 6. Graphical representations of D(t), A(t), A.

A(t) = 2a
√

t. We now have limt→∞ A(t) = ∞, and so from
Theorem 2 Part b, then t∗ always exists. In this case, it is
easy to find the exact value of t∗ in terms of the two system
parameters, namely, a and C as follows. From Eq. (11), we
know that t∗ must satisfy

A
�
t∗

�
− t∗f

�
t∗

�
= C,

substituting for A(t) and f (t) we get

2a
√

t∗ − t∗a/
√

t∗ = C,

and this gives

t∗ = (C/a)2,

and also

A
�
t∗

�
= 2C.

Fig. 7. Example 2 illustrating Part a of Theorem 2 for f (t) = e−t with
a = 1, ρ = 1, A = a/ρ = 1, C = 0.2 and t∗ = 0.825.

Fig. 8. Example 3 illustrating Part b of Theorem 2 for f (t) = a/
√

t with
a = 3, C = 2 and t∗ = (C/a)2 = (2/3)2 = 0.444.

Moreover,

f
�
t∗

�
= a2/C,

and so

t∗f
�
t∗

�
= C.

Recall that, under optimal updating, the net value gained per
unit time is f (t∗). Also t∗f (t∗) is the net value that the system
accumulates over each period which, in this example, is half
of A(t∗), the other half of which is also C, the amount that has
been paid for the update. That is, as said earlier, it is always
true that A(t∗) − C = t∗f (t∗).

In Figure 8 we show a particular case of Example 3 where
we have a = 3 and C = 2. In this case we have t∗ = (C/a)2 =
0.444.

In the following Theorem, we show an invariance of t∗ to
a vertical shift of f (t) by a constant B.

Theorem 3: The value of t∗ is invariant to any “shifting” of
f (t) by a (positive or negative) constant, say B.

Proof: We know that t∗ is the value of t that satisfies Eq. (4).
Rewriting that equation, we seek the value of t that satisfies

� t

x=0
f (x)dx − C = tf (t). (12)
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Let us now consider finding t∗ for the shifted function f (t)+B
which must satisfy the equation above, namely,

� t

x=0

�
f (x) + B

�
dx − C = t

�
f (t) + B

�
,

or,
� t

x=0
f (x)dx + Bt − C = tf (t) + Bt.

Note specifically that the terms involving B cancel out yielding
� t

x=0
f (x)dx − C = tf (t).

But this is exactly the same as Eq. (12) which proves that t∗

is the same for f (t) and f (t) + B.
Since we allow f (t) to be monotonically non-increasing, we

must consider the case where f (t) remains “flat” at the constant
value f (t0) in some region such as 0 ≤ t0 ≤ t ≤ t1. Consider
the following Theorem.

Theorem 4: Given that f (t) is “flat” in a region, i.e., f (t) =
f (t0) in the region t0≤t≤t1, and if, in addition, we have that
t∗ > t0, then t∗ cannot occur in the flat interval t0≤t≤t1.

Proof: Recall from Eq. (11) that the non-decreasing func-
tion D(t) = A(t) − tf (t) must rise to the value C at which
point, t = t∗. However, in the region t0≤t≤t1 we have

A(t) = A(t0) + f (t0)(t − t0),

and

tf (t) = t0f (t0) + f (t0)(t − t0).

So

A(t) − tf (t) = A(t0) + f (t0)(t − t0) − t0f (t0) − f (t0)(t − t0),

or

A(t) − tf (t) = A(t0) − t0f (t0). (13)

which is constant in the interval t0≤t≤t1.
But since we know that t∗ > t0, then A(t) − tf (t) has not

yet reached C by time t0. Moreover, from Eq. (13) we know
that D(t) is constant at the value A(t0) − t0f (t0) in the region
t0≤t≤t1, and so it cannot possibly reach C in that flat interval.
Hence, t∗ > t1.

Note that Theorem 3 extends Assumption 4 to allow
limt→∞ f (t) to be any finite value. Specifically, if
limt→∞ f (t) = 0 as in Assumption 4, then adding B to f (t)
gives us the new function g(t) = f (t)+B and for this function,
limt→∞ g(t) = B. Note further that Theorem 2 Part a requires
A ≥ C in order for t∗ to exist, yet when we consider g(t),
then A depends upon B. However, Theorem 3 shows that g(t)
and f (t) have the same t∗. Thus the A we must compare to C
(i.e., is A ≥ C?) is the A for f (t) (i.e., B = 0).

IV. APPLICATION TO THE AGE OF INFORMATION METRIC

Note that the analysis in Section III was based on
Assumption 3 which stated that f (t) ≥ 0. Moreover, from
Assumption 4 we assumed that limt→∞ f (t) = 0. In fact, we
were never really constrained by f (t) ≥ 0 and, further, we
noted from Theorem 3 that we could also relax Assumption 4.

Hence, in this Section IV, we relax both of those
Assumptions.

Once we allow f (t) < 0 as well, we may extend our
results to include the common Age of Information (AoI)
metric. The AoI literature assumes a penalty for holding
stale information. In many AoI studies that penalty grows
linearly7as that information goes further out-of-date. As a
simple way to model such AoI studies, we can set f (t) = −t.
In this Section IV, we consider combining the case of positive
values for information (as in Section III) mixed with negative
values for information (as with AoI).

References [2], [3] are excellent introductions and sum-
maries of AoI. Perhaps the simplest model of AoI consists of
updates delivered by an update source to a destination. If an
update is generated at time ta, then at time t ≥ ta, the Age of
Information (AoI) metric associated with that update at time t
is t − ta. The larger is the value of the AoI metric, the greater
is the penalty for not updating. The simplest model for AoI
we can generate in this paper (assuming ta = 0) is

f (t) = −t. (14)

The general literature of AoI considers far more complex
AoI scenarios8 as described in [2] and [19]. We choose to
consider our simple model9 (and some extensions below) to
enable us to use the “simple” and intuitive optimization results
from Section III and some more details as developed in this
Section IV.

We now introduce and analyze some interesting AoI
examples.

Example 4: We begin with the linear model presented in
Eq. (14), namely f (t) = −t. We note that this is perhaps the
simplest pure AoI metric where the negative value of f (t)
just gets linearly worse as t increases since AoI customarily
penalizes the information value of f (t) for its increasing
staleness. For this case, we see that A(t) = −(t2)/2. From
Eq. (11) we see that in order to find t∗, we must solve the
equation

A
�
t∗

�
− t∗f

�
t∗

�
= C. (15)

Substituting for A(t) and f (t) we get

−
�
t∗

�2
/2 +

�
t∗

�2 = C,

and this gives

t∗ =
√

2C,

and also

A
�
t∗

�
= −C.

7Non-linear cases are also studied in the AoI literature as in [4], [6], [20],
[21], [22].

8For example, if updates are sent by the source repeatedly, then they
may form a queue at the destination and the order in which they are used
by the destination will determine the value of the information for that AoI
scenario [23], [24]. In addition, the updates may arrive at the destination out
of order due to random network delays [25]. Incorrect information may arrive
from the source as investigated in [26]; this might occur if, for example, the
communication channel is noisy.

9Note that our model contains no queues.
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Moreover,

f
�
t∗

�
= −

√
2C,

and so

t∗f
�
t∗

�
= −2C.

The net value gained per unit time over a cycle is f (t∗).
We note again that t∗f (t∗) is the net value that the system
accumulates over each period which, in this example, is −2C;
of course it is pure negative since in this model, we are
penalized for staleness (i.e., an amount A(t∗) = −C) and once
we “pay” the additional amount of −C for the update, we have
a net “loss” of −2C which is t∗f (t∗) and is also A − C. Note
further that A(t) − tf (t) = t2/2 and so, from Eq. (1) we see
that A(t) − tf (t) will always exceed the cost C for some t and
so t∗ always exists.

In Figure 9(a) we show a specific case for Example 4 and
in Figure 9(b) we show a specific case for the following
Example 5.

Example 5: As another example, let us slightly generalize
the linear model in Example 4 and consider the “shifted” AoI
function

f (t) = a − bt.

For this function, we see that A(t) = at −bt2/2. As earlier we
must solve Eq. (15). Substituting for A(t) and f (t) we get

at∗ − b
�
t∗

�2
/2 − t∗

�
a − bt∗

�
= C,

and this gives

t∗ =
�

2C/b,

and also

A
�
t∗

�
= a

�
2C/b − C.

Moreover,

f
�
t∗

�
= a −

√
2Cb,

and so

t∗f
�
t∗

�
= a

�
2C/b − 2C.

Again we note that since A(t) − tf (t) = bt2/2, then there is
always some value of t for which this function equals C and
so t∗ always exists (and equals

√
2C/b).

Example 5 shows us a combined case where we allow f (t)
to be positive (as in Section III) when f (t) ≥ 0 in the range
0 ≤ t ≤ a/b as well as negative (i.e., stale information for the
AoI metric) when f (t) ≤ 0 in the range a/b ≤ t.

We now consider a class of non-linear combined cases.
Example 6: We consider

f (t) = a − btk.

For this function, we see that A(t) = at − btk+1/(k + 1). Once
again, we substitute for A(t) and f (t) in Eq. (15) to get

at∗ − b
�
t∗

�k+1
/(k + 1) − t∗(a − b

�
t∗

�k = C,

and this gives

t∗ = k+1
�

(k + 1)C/kb,

Fig. 9. Specific cases for Examples 4 and 5.

and also

A
�
t∗

�
= a k+1

�
(k + 1)C/kb − C/k.

Moreover,

f
�
t∗

�
= a − b

�
(k + 1)C/kb

�k/(k+1)
,

and so

t∗f
�
t∗

�
= a k+1

�
(k + 1)C/kb − C(k + 1)/k.

Again we note that since A(t) − tf (t) = btk+1/(k + 1), then
there is always some value of t for which this function equals
C and so t∗ always exists.

It is interesting to note that t∗ is independent of the
“shifting” parameter in Examples 5 and 6 above. In fact,
Theorem 3 (where we used the general “shifting parameter”
B) has proven this for all functions f (t).

In Figure 10(a) we show a specific case for Example 6 and
in Figure 10(b) we show a specific case for the following
Example 7.

Example 7: We now consider a slightly generalized version
of the linearized function shown in Example 5. Specifically
we now consider

f (t) =
�

a − bt + B if 0 ≤ t ≤ a/b
B if a/b ≤ t.

Note that we have added two features: (1) we have explicitly
introduced the “shifting” parameter B where B is any finite
value (positive or negative), and (2) we have frozen f (t) = B
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Fig. 10. Specific cases for Examples 6 and 7.

when a/b ≤ t. For this function, we see that A(t) = at −
bt2/2 + Bt in the range 0 ≤ t ≤ a/b.

As earlier we must solve Eq. (15) to find t∗. However, we
recall from Theorem 4, that if t0 < t∗, then t∗ cannot occur in
the “flat” interval t0 ≤ t ≤ t1. In this example, the “flat” region
is (a/b)≤ t. Note further that this example is an example of
Theorem 3 and recall that the “shifting” parameter B can be
set to 0 and still get the same t∗; once we do that, we have an
f (t) that fits the conditions of Theorem 2 Part a and for t∗ to
exist, A must be such that A ≥ C where A is simply the area
of the “triangle” for B = 0 in this example, i.e., A = a2/2b.

Thus we seek to find t∗ in the range 0 ≤ t ≤ a/b.
Substituting for A(t) and f (t) we get

at∗ − b
�
t∗

�2
/2 + B

�
t∗

�
− t∗

�
a − bt∗ + B

�
= C,

and this gives

t∗ =
�

2C/b for 0 ≤ t∗ ≤ a/b.

If we check the condition on a, b and C for t∗ to exist, we get

t∗ =
�

2C/b ≤ a/b,

or

C ≤ a2/2b.

Fig. 11. Example 8 for f (t) = a−btk +B for 0 ≤ t ≤ (a/b)1/k and f (t) = B
for (a/b)1/k ≤ t, a = 2, b = 1, k = 2, B = −1.5, C = 0.5, A = 1.886 and
t∗ = 0.91.

But we know that A = a2/2b and so the condition for t∗ to
exist is A ≥ C. If A < C then t∗ does not exist, hence

t∗ =
�√

2C/b if C ≤ a2/2b
Does not exist if C > a2/2b.

(16)

Example 8: We now generalize the case shown in
Example 6 in the same way Example 7 extended Example 5.
That is we introduce the “shifting” parameter B and we freeze
f (t) = B when (a/b)1/k ≤ t.

f (t) =
�

a − btk + B if 0 ≤ t ≤ (a/b)1/k

B if (a/b)1/k ≤ t.

For this function, we see that A(t) = at − bt(k+1)/(k + 1)+ Bt
in the range 0 ≤ t ≤ (a/b)(1/k). As earlier we must solve
Eq. (15) in this range. Substituting for A(t) and f (t) we get
for 0 ≤ t∗ ≤ (a/b)(1/k)

at∗ − b
�
t∗

�(k+1)
/(k + 1) + Bt∗ − t∗

�
a − b

�
t∗

�k + B
�

= C,

and if t∗ ≤ (a/b)(1/k) this gives (where the argument for
(a/b)1/k < t∗ is the same as in Example 7)

t∗ =
�

k+1
√

(k + 1)C/kb if 0 ≤ t∗ ≤ (a/b)1/k

Does not exist if (a/b)1/k < t∗.

As in Example 7, if t∗ > t0, then t∗ cannot occur in the
“flat” interval t0≤t≤t1. In this example, the “flat” region is
(a/b)1/k ≤ t. Thus we conclude that if t∗ is to occur at all, it
must occur in the interval 0 ≤ t ≤ (a/b)(1/k). Following the
discussion in Example 7, the “shifting” parameter B can then
be set to 0 in order to find A and then we see that the condition
for t∗ to exist is, as usual, A ≥ C where now the appropriate
value of A is A = ((ak/(k+1))(a/b)1/k. In Figure 11 we show
a specific case for this Example 8.

It is interesting to see that for Examples 4, 5 and 7, the value
of the optimum update time is the same, that is, t∗ = √

2C/b
and only Example 7 requires the condition A ≥ C (since the
limit A is unbounded for the other two cases). Further, we
note that both Examples 6 and 8 have the same value for
t∗ and only Example 8 requires the condition A ≥ C. All
of these statements regarding t∗ hold regardless of the value
of B. Finally note in all these examples, that t∗ occurs at the
maximum value of (A(t) − C)/t.
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Fig. 12. Average Value Gained Per Unit Time With Transmission Delays.

V. TRANSMISSION DELAYS AND STALE UPDATES

Here we assume that there is a transmission delay, d1, for
an update request to reach the information source, and a delay,
d2, for the information to be returned. When it returns, it is
already d2 time units old. Let t be the time between receiving
updates. The problem becomes: Given d1, d2, and C, choose
t to maximize the average value gained per unit time.

Figure 12 shows the cycle of an update with delays for a
user. At time −(d1 + d2), the update is requested. At time
−d2, the request reaches its destination, and the response is
sent to the user. At time 0, the data reaches the user. Note that
at time 0, the data is already d2 time units old. Let t −d1 −d2
be the time the next update request is sent. At time t, the next
update arrives at the user.

Using the same approach as above, we identify the objective
function for our optimization to be the total net value gained
between the receipt of two updates, namely,

−C +
� t+d2

x=d2
f (x)dx

t
. (17)

Taking the derivative of this objective function with respect
to t shows this function is maximized when it equals f (t +d2)

which is the value the old information will have when the
update arrives. The formula for defining the optimal t is thus
given by

−C +
� t∗+d2

x=d2
f (x)dx

t∗
= f

�
t∗ + d2

�
. (18)

Note that in this case, the actual request is made at time
t∗ − d1 − d2. Thus it is important to know f (t) ahead of time
since it can sometimes be optimal to request an update before
the previous update request has been satisfied.

In some cases we may choose an information source with a
lower cost, but whose information may be out-of-date to begin
with (such as a cache file). For this case, we assume no trans-
mission delays. Let d be how far out-of-date the information
source itself is. The model for transmission delays in this
Section and this model for stale updates are essentially the
same in that the information is already somewhat out-of-date
by the time it reaches the user. Thus, the delay model and its
equations herein can easily be applied to stale updates, and so
we find that the optimal update time t∗, is the t that satisfies
−C +

� t∗+d
x=d f (x)dx

t∗
= f (t∗ + d). The models for stale updates

and for transmission delays are particularly useful in networks

that have multiple sources of information and/or multiple paths
to retrieve information each with its own independent cost and
delay. The formulae we have derived can be used to determine
the average value over time gained from each path to each
source under optimal update times. The one with the highest
value over time should be used.

VI. NO GAIN DURING UPDATES

Often, no value can be gained during the update process.
We model this by introducing a new parameter L, the amount
of time necessary to perform an update during which no value
can be gained.

For example, in some ad hoc mobile radio networks,
the information that needs updating are power gains, code
assignments, connectivity, routing tables, and other information
regarding the status of the network. The process of updating
this network information is referred to as a global control
phase. The accuracy of this information is crucial to the
efficiency of the network. Since this algorithm is working in
a mobile environment, this information will change over time.
As it changes, the performance of the system will degrade
until another global control phase is performed. However, the
network may be unusable during global control phases (as
in [1]). Obviously, if the radios cannot communicate, it doesn’t
matter how up-to-date the network information is, and no
real value is gained by the network during the global control
phases.

We now present a method for determining the optimal
update times for problems of this type. As usual, let the
monotonically decreasing function f (t) be the instantaneous
value of the system, given that the update process finished t
seconds ago, and let C be the cost of the update (C can be 0).
Let the amount of time necessary to perform an update be the
constant L > 0.

What is the optimal amount of time, t∗, between completing
the last update and starting the next one for this model? We
now establish the following Theorem:

Theorem 5: A piece of information should be updated

whenever
−C +

� t
x=0 f (x)dx

L + t
≥ f (t) where t is the time since

the last update.
Proof: Once again the optimal update times are chosen to

maximize the average net gain per unit time. The total time
between updates is now (L+ t), the amount of time to perform
the update, L, plus the amount of time the system is allowed to
run between updates, t. The net value gained between updates
is −C plus the integral of the instantaneous value of the
information from the time it is received to time t, namely
−C +

� t
x=0 f (x)dx. Thus, our objective function, namely, the

average gain per unit time, is as follows:

−C +
� t

x=0 f (x)dx

L + t
. (19)

To find the maximum point, we take the derivative and set it
to 0, namely

f (t)(L + t) + C −
� t

x=0
f (x)dx = 0. (20)
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Fig. 13. The Mobility Model.

Simplifying yields

−C +
� t

x=0 f (x)dx

L + t
= f (t). (21)

This formula is the same as the one derived for the optimal
scheduling of load balancing on a SIMD machine in [27]
where C = 0. The explanation of this formula is similar to that
of the original formula in Section III. The update should be
performed at the point where the instantaneous amount gained
per unit time, f (t), is equal to the average gained during the
current update cycle from the time when the update began,

which is
−C +

� t
x=0 f (x)dx

L + t
. Since f (t) is monotonically non-

increasing, either waiting longer or updating sooner will result
in a lower expected gain per unit time over the course of the
update cycle.

It turns out that these results have many far-reaching
applications outside the field of information management. For
example, suppose we own a factory and are able to judge the
productivity of this factory as a function of the last time it
was retooled, f (t). We also know how much it will cost to
retool, C, and the length of time for which operations will have
to be shut down, L. The formula above will give the optimal
times to retool a factory.

VII. VARIABLE UPDATE COSTS

Let us now consider the case of dynamically changing
update costs. This may be caused by a user moving around
a network, a network that is unreliable, or using wired and
wireless access alternately. Again we revert to the assumption
that there are no transmission delays. We represent this
changing cost by using a Markov process with two states,
S1 and S2 which respectively represent well-connected and
poorly-connected. The cost to update information from S1 is
C1 and the cost from S2 is C2 (C1 < C2). We further assume
that the user moves from state S1 to S2 at rate r1, and moves
from S2 to S1 at rate r2. That is, the user movement among
states is a Markov Process and spends independently chosen
exponentially distributed amounts of time with means 1/r1 and
1/r2 in S1 and S2 respectively (see Figure 13).

A. Disconnected Users

We first look at the case where the user is totally discon-
nected in S2. That is to say, no information can be accessed
from S2, or equivalently, the update cost C2 is prohibitively
high. Let t1 be the amount of time since the last update beyond
which the user will request a new update if in the connected

state. We choose t1 to maximize the total average value gained
per unit time.

To find the optimal t1, we use the same idea as earlier.
We look at the expected value gained over the period from
one update to the next, divide by the expected length of
the period, and choose t1 to maximize this value. This is
a Markov renewal reward process [28] where we seek to
find the expected value gained per unit time. This leads us
to Equation (22) below which is a direct application of the
Renewal Reward Theorem [28] to this problem.

No matter which state the user is in at time t1, the value
gained so far is −C1 +

� t1
x=0 f (x)dx. The time taken is t1. Since

the user starts in S1 at time 0, the probability of being in state
S1 at time t1 is

r2

(r1 + r2)
+ r1

(r1 + r2)
e−(r1+r2)t1 [29]. The prob-

ability of being in S2 at time t1 is
r1

(r1 + r2)
(1 − e−(r1+r2)t1).

If the system is in S1 at time t1, an update is immediately
requested. The information arrives immediately and the cycle
starts over again. However, if the user is in S2 at time t1,
no update can be made immediately. But, as soon the user
moves back to S1, the update will be requested. This must be
optimal for any non-increasing f (t). The expected amount of
time the user stays in S2, if there at time t1, is

� ∞
x=0 e−r2xdx

which equals 1/r2. Thus the expected time between updates
is t1 + r1

(r1 + r2)
(1 − e−(r1+r2)t1)(1/r2).

The expected net value gained between updates equals
minus the information cost plus the value gained up to time
t1, namely, −C1 +

� t1
x=0 f (x)dx, plus the probability that the

user is in S2 at time t1, times the expected value gained
while the user stays in S2 before returning to S1. If the user
is in S1 time t1, an update will be obtained immediately;
otherwise, it will be obtained as soon as the user returns to S1.
If the user is in S2 at time t1, the expected total value gained
before returning to S1 and updating is

� ∞
x=t1

f (x)e−r2(x−t1)dx =
er2t1

� ∞
x=t1

f (x)e−r2xdx. We define this last integral as I
�=� ∞

x=t1
f (x)e−r2xdx. Furthermore, for convenience we define the

quantity J as J
�= r1

(r1 + r2)
(1 − e−(r1+r2)t1).

The complete formula for the expected value gained per unit
time in this model is thus:

−C1 +
� t1

x=0 f (x)dx + IJer2t1

t1 + J/r2
. (22)

In order to maximize this function we take its derivative

and set it to 0, noting that if (h/g)′ = 0 then
g′

g
= h′

h
and

g′h = gh′. We thus get
�

f (t1)(1 − J) + r1I

r1 + r2

�
r2er2t1 + r1e−r1t1

���
t1 + J

r2

�

=
�
−C1 +

� t1

x=0
f (x)dx + IJer2t1

��
1 +

�
r1

r2

�
e−(r1+r2)t1

�
.

(23)

Thus an update should be performed when time t = t1
satisfies this equation. Note that the more frequently one
becomes disconnected and the longer one stays disconnected,
the more frequently one should update when in the connected
state.
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B. Poorly-Connected Users

In this section we consider users who move at exponential
rates r1 and r2, as shown in Figure 13, between a well-
connected state, S1, and, in this case, a poorly-connected state,
S2. We model well-connected and poorly-connected users by
having different costs for obtaining updates from S1 and S2
which are C1 and C2 respectively, where C1 < C2. Assume
that we make an update at t = t1 when in S1 and make an
update at t = t1 + t2 when we are in S2. As soon as we move
from S2 to S1, we make an update immediately if t ≥ t1.

If it is optimal to perform an update from S1 at the time
since the last update, t1, it is also optimal to perform an update
from S1 at any time greater than t1. Thus the optimal strategy
has the following form:

Never perform an update from either state until time t1. If in
state S1 at time t1, immediately perform an update. If in state
S2 at time t1, then perform an update as soon as you transition
from S2 to S1 for any time up to t1 + t2. If no transitions to S1
have occurred by time t1 + t2, then perform an update from
S2 at time t1 + t2.

Note that this strategy makes no use of the state in which
the last update occurred and only uses knowledge of the
current state. This is because the movement between states
is a Markov Process, thus knowing the current state renders
the knowledge of historic movement between states and, in
particular, knowing the state from which the last update
occurred, irrelevant for predicting the future.

We wish to develop a formula that gives the expected gain
per unit time for given values of t1 and t2. We first compute the
steady state probabilities, P1 and P2, of performing an update
from S1 and S2 respectively for different values of t1 and t2.

Each update occurs from either S1 or S2. If the last update
occurred in S1, let p1,1 and p1,2 be the probabilities that the
next update occurs from S1 and S2, respectively (where p1,1+
p1,2 = 1). Similarly, let p2,1 and p2,2 be the probabilities that
the next update occurs from S1 and S2, respectively, given that
the last update occurred from S2 (where p2,1+ p2,2 = 1).

Now, to compute p1,1, p1,2, p2,1 and p2,2, assume the last
update occurred from state S1. The probability, p1,2, that the
next update occurs in state S2 is the probability that the user
is in state S2 at time t1, times the probability that no state
transitions occur between time t1 and t1 + t2, that is

p1,2 = r1

r1 + r2

�
1 − e−(r1+r2)t1

�
e−r2t2 . (24)

Similarly, p2,2 equals the probability that the user is in state
S2 at time t1 given that the last update occurred from S2, times
the probability that the user does not become well-connected
between time t1 and t1 + t2, that is

p2,2 =
�

r1

r1 + r2
+ r2

r1 + r2
e−(r1+r2)t1

�
e−r2t2 . (25)

Recall that p1,1 = 1 − p1,2 and that p2,1 = 1 − p2,2.
Now we compute P1 and P2 = 1 − P1, the two steady-state

probabilities for the last update having occurred in S1 and S2,
respectively. We have

P2 = P1p1,2 + P2p2,2.

Recalling that P1 = 1 − P2 yields

P2 = p1,2

p1,2 + 1 − p2,2
.

Some algebraic substitutions yield

P2 = 1 − e−(r1+r2)t1

1 − e−(r1+r2)t1 + r1 + r2

r1
er2t2 − 1 − r2

r1
e−(r1+r2)t1

.

(26)

Now that we have the steady-state probabilities, we are in a
position to create an equation for the value gained per unit time
under the strategy defined by t1 and t2. To derive this equation,
we assume that the last update was from S1 with probability
P1 and from S2 with probability P2. Given the definition of
the steady state, we know that the next update will be from S1
with probability P1 and from S2 with probability P2. Because
of this, the expected net value gained per unit time over a
single update cycle is the overall expected value gained per
unit time for the strategy. It is convenient to first define R to
be the steady-state probability that we are in S2 at time t1,
which yields

R = P1
r1

r1 + r2

�
1 − e−(r1+r2)t1

�
+

P2

�
r1

r1 + r2
+ r2

r1 + r2
e−(r1+r2)t1

�
. (27)

The expected time between updates is thus: t1 +
R

� t2
x=0 e−r2xdx. The expected cost of an update is P1C1+P2C2.

The expected value gained from the information between
updates is

� t1
x=0 f (x)dx + R

� t2
x=0 e−r2xf (x + t1)dx. Finally, the

average value gained per unit time (using the Renewal Reward
Theorem [28]) is thus

−P1C1 − P2C2 +
� t1

x=0 f (x)dx + R
� t2

x=0 e−r2xf (x + t1)dx

t1 + R
� t2

x=0 e−r2xdx
.

(28)

The optimal values of t1 and t2 are found by maximizing
this equation with respect to t1 and t2. Note that the more
frequently one becomes poorly-connected and the longer one
stays poorly-connected, the more frequently one should update
when in the well-connected state. Furthermore, the more
frequently one moves from the poorly-connected state, the less
frequently one should update in the poorly-connected state.

VIII. CONCLUSION

We have presented methods for finding the optimal update
times for out-of-date information. To solve this problem we
introduced a new way of looking at the value of information as
a function, f (t), of how far out-of-date information is. These
methods are very general, and work for any arbitrary non-
increasing f (t), and have intuitive and graphical simplicity.
Using this we have found optimal update times for a number of
simple cases, including some that use the Age of Information
metric. We further solved the model in which there is a
delay between an information request being made and that
information arriving. Next we used the same ideas to present
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a methodology for determining optimal update times when
no value can be gained from information during the update
process. We also presented a more general model in which
there is an explicit cost of an update and in which useful work
must cease while the update is performed. We extended this
to a case where the user becomes intermittently disconnected,
and a case where the user moves from well-connected to
poorly-connected. All these results make no assumptions about
the shape of f (t) except that it must be monotonically non-
increasing.

APPENDIX

PROOF OF THEOREM 2

Proof (Part a): Rewriting Eq. (11) we see that we obtain
t∗ if the following equation is solvable:

D
�
t∗

�
= A

�
t∗

�
− t∗f

�
t∗

�
= C. (A.1)

From Eq. (6) we have

D(t) = A(t) − tf (t),

=
� t

x=0
f (x)dx − tf (t),

=
� t

x=0

�
f (x) − f (t) + f (t)

�
dx − tf (t),

=
� t

x=0

�
f (x) − f (t)

�
dx + tf (t) − tf (t),

=
� t

x=0

�
f (x) − f (t)

�
dx.

But by Assumption 3 in Section II, the integrand f (x)− f (t) ≥
0 for x < t which shows that

D(t) ≥ 0. (A.2)

Taking the limit of D(t) as t → ∞, we have

lim
t→∞ D(t) = lim

t→∞ A(t) − lim
t→∞ tf (t)

= A − lim
t→∞ tf (t). (A.3)

We now set out to prove for this Part a that if A < ∞, then,
limt→∞ tf (t) = 0.

Let g(t) = tA(t). Consider limt→∞ g(t)/t which naively can
be considered to be indeterminant. So let’s use L’Hopital’s rule
to give

lim
t→∞ g(t)/t = lim

t→∞
(d/dt)g(t)

(d/dt)t
. (A.4)

In general, L’Hopital’s rule requires the limt→∞(d/dt)g(t) to
exist. From its definition, we have

lim
t→∞(d/dt)g(t) = lim

t→∞(d/dt)tA(t),

= lim
t→∞ tdA(t)/dt + lim

t→∞ A(t),

= lim
t→∞ tf (t) + A.

However, from Figure 6 we clearly see that tf (t) < A(t) and
so we see that limt→∞ tf (t) < limt→∞ A(t) = A < ∞.
Hence we have shown that limt→∞(d/dt)g(t) < 2A < ∞ and

so limt→∞(d/dt)g(t) exists. The left-hand side of Eq. (A.4)
gives us

lim
t→∞ g(t)/t = lim

t→∞ A(t) = A, (A.5)

and the right-hand side of Eq.(A.4) gives us

lim
t→∞

(d/dt)g(t)

(d/dt)t
= lim

t→∞
tf (t) + A

(d/dt)t
, (A.6)

Equating Eq. (A.5) and Eq. (A.6) gives us

A = lim
t→∞ tf (t) + A,

and hence we have established that if A < ∞, then we have

lim
t→∞ tf (t) = 0. (A.7)

Applying Eq. (A.7) to Eq. (A.3) we see that

lim
t→∞ D(t) = A. (A.8)

Clearly D(0) = 0 and from Eqs. (A.2) and (7) D(t) cannot
decrease as t increases and its limit is A as given in Eq. (A.8).
Now, if A ≥ C, then D(t) must reach the value C on its way
to its limit A and the time t when this occurs is, by Eq. (A.1),
equal to t∗. If A < C, then clearly A(t) will never reach C so
t∗ will not exist. Thus Part a is proven.

Part b: We seek to show that Eq. (A.1) is always satisfied
if limt→∞ A(t) = ∞. From Eq. (6) and Eq. (A.2) we see that

A(t) ≥ tf (t). (A.9)

We now examine the slope of both sides of Eq. (A.9). By
definition, the differential of the left-hand side of the inequality
is clearly dA(t)/dt = f (t). Differentiating the right-hand side
of this inequality we get

d(tf (t))/dt = df (t)/dt + f (t).

Again, by Assumption 3 in Section II, we know that df (t)/dt ≤
0 and so

dA(t)/dt = f (t) = d(tf (t))/dt − df (t)/dt ≥ d(tf (t))/dt.

This establishes that

dA(t)/dt ≥ d(tf (t)/dt. (A.10)

From its definition in Eq. (6) we see that D(t) is the
difference between A(t) and tf (t). In Eq. (A.10) we have
shown that the slope for A(t) is greater than the slope for tf (t)
(except in those intervals where f (t) is constant), so these two
curves must diverge as t increases. Now we have assumed
that limt→∞ A(t) = ∞ and so A(t) grows without limit. That
means that D(t) will grow without limit (unless f(t)=constant
for all t) and so D(t) will eventually reach the value for any
finite C at some value of t = t∗ which will then satisfy
Eq. (A.1), and so Part b is proven.
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