
Optimization of Assisted Search Over
Server-Mediated Peer-to-peer Networks

Zifan He, Leonard Kleinrock
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095, U.S.

zifanhe1202@g.ucla.edu, lk@cs.ucla.edu

Abstract—Accompanied by improving accessibility of data and
storage and the invention of the blockchain economy, advantages
of the peer-to-peer network in privacy and efficiency over server-
client systems have become more significant recently. One of
the most popular applications of peer-to-peer networks is file
transferring, where each peer stores a partial segment of a file
and the requester can aggregate each piece into a single file when
downloading it. To optimize the performance of file transmission,
one goal is to increase the searching speed for the file location over
the network. In this paper, we analyze the server-mediated peer-
to-peer networks, which is an uncommon architecture mentioned
in previous works but can potentially improve the search speed,
and minimize the average number of hops during flooding search.

Index Terms—Peer-to-peer network, File transfer, Server-
mediated, Configuration model

I. INTRODUCTION

As people’s awareness of data security and potential storage
failure in both hardware and software rises, backing up per-
sonal data from workspaces to disks or the cloud becomes a
popular strategy to avoid losing any important file. However,
conventional methods of backup have their drawbacks: cloud
services such as Google and Dropbox will charge for extra
storage and have potential privacy issue, while syncing to
a hard disk drive or SSD (RAID stack for NAS) is less
flexible and may be broken accidentally. Concerning the
scalability and inherited architecture for privacy, a peer-to-
peer network provides a favorable internet structure to back
up files. People can request drive space from other neighbors
when available without being charged. Therefore, the overall
utilization of storage hardware would increase. Free software
such as BuddyBackup [1] has implemented a backup system
over an unstructured peer-to-peer network, but it only supports
limited operating systems and is not well maintained currently.

The inspiration of this paper is mainly to resolve several
theoretical questions regarding the construction of an efficient
peer-to-peer (P2P) backup system, including the searching
strategy, the file partition, and the optimized protocol for
CRUD (create, read, update, delete) operations for future
reference when actually implementing one. The remainder of
this paper focuses on a specific P2P network architecture,
the ”server-mediated P2P system”, and applies mathematical

analysis and simulation to investigate its file searching perfor-
mance with respect to several hyperparameters and provides
a guide to optimize it numerically and analytically. The
outcome of the paper can be applied to not only P2P backup
system, but also the blockchain systems that are actively
investigated recently. Section 3 offers more detail regarding the
proposed system design and assumptions about the network,
and sections 4 and 5 include mathematical computations of
the searching algorithm.

II. BACKGROUND AND RELATED WORKS

Based on the methodology of organizing neighbors and
assisting searching mechanisms, peer-to-peer networks can
be categorized into two groups: unstructured and structured.
Unstructured peer to peer network protocols, such as Gnutella
[4], organizes the network structure by the behavior of each
of the peers themselves, where each node maintains a TCP
connection with the neighbors of their choice. When searching
for a file via flooding, the flooding starts from the requester
that crawls through pre-established connections. Structured
peer-to-peer networks, such as the IPFS (InterPlanetary File
System), may use different kinds of data structures, such
as Distributed Hash Tables (DHT) and Merkle DAGs, to
identify and locate the peers for better searching performance,
while they cannot handle dropping connections as well as
an unstructured P2P network [2]. To balance the tradeoffs
between structured and unstructured peer-to-peer networks,
a common hybridization is to have a server as a mediator
to help peers to find each other’s files. One of the potential
implementations is to reserve several machines as trusted peers
and a server will then send the same criteria of the request
file to each of them [3]. Since new nodes tend to be clustered
around each trusted peer according to the Gnutella protocol,
this assisted search can potentially increase the searching
coverage and improve the searching performance. Although
previous research had implemented this architecture using
Java Gnutella APIs for experimentations, quantitative analysis
for optimizing the model is still missing. There is recent
research on blockchain P2P topology with similar network
structure, but the main focus is on the network properties
and technical implementations, instead of the analysis and
optimization [12]. The result of the analysis will be crucial for
the actual implementation of an optimized P2P system using978-1-6654-3540-6/22/$31.00 © 2022 IEEE

the same structure, such as Spotify [11], to reduce latency and
cost. Therefore, this paper takes the server-mediated peer-to-
peer system as the basic assumption, with some modifications,
and investigates the relationship between file searching speed
and several parameters, especially the number of trusted peers
and number of replicas of a file in the network.

Due to limited resources of data, a common practice in
analyzing an ensemble of peer-to-peer networks is to use
a random graph model or configuration model, so that one
can simulate properties of networks to align with reality.
Early works on search time over unstructured peer-to-peer
networks used the Erdos-Renyi model or the Clustered Erdos-
Renyi model, which is a variation of the Erdos-Renyi model
by having another probability q for the connections between
clusters of the Erdos-Renyi graphs [5]. The results indicate
a logarithmic relationship between the number of searching
steps and the number of replicas in the network. Uniform
probabilistic models are often used to represent the behavior
of peer-to-peer networks, numerous communication networks
reveal that a better fit is to use power-law degree distribution
[6]. One must recognize that switching the architecture and
applying it to another model will likely cause the results to
change. We choose to use a configuration model with a power-
law distributed degree sequence as an interesting and more
realistic choice to analyze. For simulation, since we assume
the peer-to-peer network as undirected and unweighted, the
Barabasi-Albert preferential attachment graph generation will
be used [7]. In this model, when a new node is added into
the network, the probability that this node will attach to an
existing node i is

pi =
ki∑
j kj

where ki and kj are the degrees of node i and j.

III. SYSTEM DESIGN

As shown in figure 1, our design is similar to that imple-
mented architecture proposed in the previous work [3], except
we add a cache that resides next to the server mediator to store
the file identifier and its corresponding replica location in key-
value pairs temporarily, with a given timeout, to exploit the
temporal locality. The server has the location information of
all the trusted peers who themselves send the search requests.
Each trusted peer behaves identically as a normal peer, but it is
more likely to be attached since they exist at the beginning of
the network construction. Trusted peers may open one or more
connections with one or more peer clusters. The connections
are bidirectional, meaning that both peers on each end of the
socket connection can send messages to each other. Trusted
peers may also be connected to each other. When a new user
executes the network client, it will start an initial search of
peers over the network, with a higher preference for the trusted
nodes, and will open connections to them.

There are mainly two functions of the trusted nodes. First,
since trusted nodes are scattered in multiple peer clusters,
having multiple flooding searching starting with these nodes

Fig. 1: Architecture of the Network

can increase the possibility of reaching the target file. If the
flooding search starts only from the requester, the search will
fail if the the requester and the destination are in different con-
nected components in the network. Second, setting up trusted
nodes can inherently change the structure of the network. Due
to the first mover effect (see Section 13.3 of [7]) applied to
trusted nodes, newly joined peers are more likely to connect
with them or their neighbors. This infers that even with high
dropout rate between peers, there is a high possibility that a
connection path between a trusted node and the file destination
exists.

When a peer sends a file download request to the server,
the server will ask all trusted peers to start a flooding search
through all their connections at the same time. The behavior
is the same as an unstructured peer-to-peer network. Once
the file replica is found by one of the peers, the file will be
sent back to the server directly. Finally, the server will open
a connection to the requester and send the requested file back
to it. In the meanwhile, the file location will be stored into
the cache so that if someone requests the same file, it can be
retrieved quickly.

For simplicity, during the analysis, the time taken to send a
request from the server to trusted peers and the time for the
trusted peers to reply to the server will be ignored. These are
communications between nodes with known addresses and the
time taken has a far smaller scale compared with the time to
search the file.

IV. MODEL ANALYSIS AND APPROXIMATION

As discussed above, the proposed server-mediated peer-to-
peer network will be represented as a configuration model with
a power-law degree distribution, meaning that the probability
of a node with degree k is [7]

pk =

{
0 k = 0
k−α

ζ(α) k ≥ 1

where ζ(α) is the Riemann zeta function and α is a constant
between 2 and 3 measured from a real network [7]. In reality,
the user would drop out of, or join, the network over time,
which may perturb the network structure and thus the degree

TABLE I: Symbols in the Analysis
Label Meaning

N The number of nodes in the network

T Number of trusted peers in the network

c Average degree of non-trusted nodes

L
Average degree of trusted peers (differ from c
since trusted peers are more preferred to be
attached)

⟨k2⟩ Second moment of degree of nodes

r
Average number of replicas over the network for
each file

pk Probability that a node has degree k

aT number of nodes reachable by all trusted peers

cn
Number of newly visited nodes covered by the
flooding algorithm in the nth iteration.

dn
Number of nodes left in the network that have
not been covered after nth iteration

p Cost of running a machine as a trusted peer

q
Cost of each hop of searching during flooding
over the network

C(p, q)
The cost function for searching a file in the peer-
to-peer network over time

distribution. For simplicity, we assume that a new node will
join the network with the attachment kernel [8]

πk =
1

1− p0

ζ(α)

ζ(α− 1)

kα

(k + 1)α−1

which is the probability that a new node is connected with
an existing node in the network. In this case, the overall
degree distribution will remain as a power law at any time.
Furthermore, since we are flooding through the network and
different neighbors may share the same neighbor, the locally
tree-like condition will not be assumed in our case, which
means we need to compute the overlapping region of nodes’
neighbors for each iteration.

For the first iteration of flooding, assume the average degree
of all trusted peers is L, which is different c, the average
degree of non-trusted nodes over the whole network, since
these trusted nodes tend to have higher degrees due to the
first mover advantage [7]. Suppose any pair of stubs (the end
of an edge that connects to the node) has the same probability
to connect and form an edge, then, when we have L nodes
attached to the first trusted peer, the fraction of neighbors of
the second trusted peer which is not the neighbor of the first
trusted peer is 1−L/N , where N is the total number of nodes.
Therefore, the number of neighbors of the first and second
trusted peers is

a2 = (1− L

N
)L+ L (1)

We can get the number of neighbors of the first n trusted peers
as a recursive formula

an = (1− an−1

N
)L+ an−1, where a1 = L (2)

To solve the closed form of the recursive relation in (2), we
first divide both sides by (1−L/N)n, then let bn = an/(1−
L/N)n, and we obtain

m∑
n=1

(bn − bn−1) =

m∑
n=1

L

(1− L/N)n

The right-hand side is a geometric series and the left-hand
side will only retain the first and the am term. Thus, we can
calculate

an = N(1− (1− L/N)n) (3)

For T trusted peers, the first iteration will cover aT = N(1−
(1− L/N)T) neighbors.

For the next several iterations, each node will have D =
⟨k2⟩−c

c excess degree, the degree of nodes excluding the one
from the incoming node, on average, where ⟨k2⟩ is the second
moment of the node degree [7]. Let cn be the number of
nodes covered in the nth iteration and dn be the number of
nodes that have not been visited. At the nth iteration, over D
excess degree, Ddn−1/N of them are visited in the previous
iteration for large N , and for each of the nodes, some portion
of neighbors are visited by the first several nodes. Thus, we
have the recursive relationship:

cn,k = (1− cn,k−1

dn−1
)
dn−1

N
D + cn,k−1

where
cn,0 =

dn−1

N
D

Using a similar method, we can calculate the closed form
formula of cn:

cn = dn−1(1− (1− D

N
)cn−1+1), where c0 = aT (4)

The number of unvisited nodes is the number of unvisited
nodes in the previous iteration less the number of nodes visited
in the current iteration, which is

dn = dn−1 − cn, d0 = N − aT (5)

or we can write

dn = dn−1(1−
D

N
)cn−1+1 (6)

which is a system of recursive relations with two variables. It
is hard to find a closed form solution for dn and cn. One way
is to compute them using a computer program using loops.
Another approach is performing an approximation for dn by
inspecting the formula and graph. By numerically computing
the first several terms of dn, we introduce the approximation

dn ≈ (N − aT)(1−
D

N
)
∑

i ci+n (7)

Taking N = 500, D = 3, r = 2, L = 9, T = 3 as an
example, we can numerically calculate N−dn and dn and plot
them on the graph, shown in figure 2 as the blue and orange
curve. Since c0 = aT , an intuitive guess of approximation of
cn is using a power of n, meaning that

dn ≈ (N − aT)(1−
D

N
)aTnα+n (8)

Fig. 2: Plot of N − dn, dn, and approximated dn

for some exponent α. Using numerical fitting by scipy on
equation (8), the best exponent to fit dn is α = 2, and the
fitted line is shown as the green curve.

Let us now assume that the file replicas are distributed uni-
formly throughout the network. To find the average minimum
hops needed to retrieve a file replica, we can apply two types
of stopping criterion. The first one checks the fraction of nodes
visited in the network, named as node coverage (NC). Since
we know the density of file replica, we can know how many
nodes we need to visit to find one replica on average. In other
words,

N − (N − aT)(1−
D

N
)aTn2+n ≥ N

r
(9)

where r is the number of replica per file. Taking natural
logarithms on both sides and solving the quadratic function
of n, we can get the inequality:

n ≥
1−

√
1 + 4aT ln N−N/r

N−aT
/ ln(1−D/N)

−2aT
(10)

A second stopping criterion we can use is the minimum
average shortest path length (MASP) from all trusted peers.
Specifically, we want to find

mint1,...,tT (E(ltix))

where tn is a trusted peer, x is another node in the network,
and ltix is the shortest path length between ti and x. If
there are r replicas randomly placed in the network for the
location assignment, we also only pick the one that is first
encountered by the flooding algorithm. Thus, the problem
is finding the expectation of the first ordered statistic. The
probability density function of min(x) is

p(x) = r(1− F (x))r−1f(x)

for a size r random sample. To get the cumulative distribution
function and pdf of the original distribution conveniently, we
perform a linear approximation on dn and get dn ≈ −(N −
aT)((1−(1− D

N)aT+1)n−1) if 0 ≤ n ≤ 1
1−(1−D/N)aT +1 and

dn = 0 otherwise. Subtracting dn from N we get N − dn ≈
(N − aT)(1 − (1 − D

N)aT+1)n if 0 ≤ n ≤ 1
1−(1−D/N)aT +1

Fig. 3: Plot of cost function for q/p = 3.49

and N − dn = N otherwise. Approximating cn = ∂(N−dn)
∂n

and normalizing it, we get the distribution of n on cn as

fc(x) =
1

1− (1− D
N)aT+1

(11)

Fc(x) =
1

1− (1− D
N)aT+1

x (12)

Therefore, the expected number of hops needed is approxi-
mately

E[n] ≈ r(1− (1− D

N
)aT+1)∫ 1/(1−(1−D

N)aT +1)

0

(1− (1− (1− D

N
)aT+1)x)r−1xdx

(13)

where n is the number of hops. Integrating (13) by parts, we
find

E[n] ≈ 1

(r + 1)(1− (1− D
N)aT+1)

(14)

V. OPTIMIZATION

To optimize the performance, we need to define the target
cost function. Define the cost function as

C(p, q) = pT + q(W (r, T,N) + 1) (15)

where p is the cost in dollar per trusted peer, and q is the
cost per second associated with search time of each file, W
is the minimum number of hops needed that we obtained
in the previous section. Increasing the cost of adding trusted
peers provides better performance and whether it is worthwhile
depends on developers’ value on lower latency. For different
cost parameters p and q, the goal is to find the value of
T that minimizes the cost C(p, q). To inspect the behavior
of the function, two plots are drawn for both approximated
MASP and NC with parameters N = 50, L = 6, r = 3, and
D = 3. As shown in figure 3, the orange curve represents
the cost function with the approximated MASP criteria. The
blue curve represents the cost function with the node coverage
criteria. The y-axis indicates the cost, and the x-axis is the
number of trusted peers in the network. The plot is drawn
as continuous functions to better observe the trend. In reality,

Fig. 4: Plot of cost function for q/p = 7.75

we will only take the integer value of the number of trusted
nodes. To some extent, even with the linear approximation,
we get similar argmin for both criteria. Due to the complexity
of computation, we compute the analytical minimum for the
second criteria, which has the cost function

C(p, q) ≈ pT + q(1 +
1

(r + 1)(1− (1− D
N)aT+1)

)

where aT = N(1 − (1 − L/N)T). Since we are expecting a
small T compared with the number of nodes, expanding aT
and 1− (1− D

N)aT+1 to the first order Taylor expansion is a
good approximation. Thus, we get

C(p, q) ≈ pT + q(1 +
1

η(r,D,N)
) (16)

where

η(r,D,N) = (r+1)(1− (1− D

N
)(ln (1− D

N
)aT +1)) (17)

Taking the derivative with respect to T and solving for the root
symbolically using Matlab, we can get that the approximated
minimum is at

T ≈

√
q ln(N−D

D) ln(N−L
N)(N−D)

p(r+1) + D
N

N ln(1− D
N) ln(1− L

N)(DN − 1)
(18)

From figure 3, there is a significant gap between the cost
function with and without the linear approximation, since the
linear approximation will overestimate the ground truth CDF
on the curvy region. This may lead to lower performance of
the optimization after approximation for different p and q.
With different ratios for q

p , the absolute difference between
optimized number of trusted nodes (T for which cost is
minimized for each curve) for both criteria are different, as
shown in figure 4 and 5 (both of which use the same parameter
set as for Figure 3).

To investigate the range of the ratio between q and p where
both stopping criteria have consensus on the optimal T , let
p = 1 and q represents the ratio to draw a plot of absolute
difference between optimal T for the cost functions of the two
criteria with q

p from 1 to 200, shown in figure 6. Since T is
an integer in reality, the plot exhibits a staircase behavior. The

Fig. 5: Plot of cost function for q/p = 50

Fig. 6: Absolute difference between optimal T between approximated MASP
and NC for 1 ≤ q

p
≤ 200, for N = 50, D = 6, and r = 3

cases illustrated on Figure 3 to Figure 5 are critical points of
changes for the absolute difference of the optimal solutions
between the two stopping criteria.

As the result, if we tolerate the absolute error of optimiza-
tion on number of trusted nodes within 1, then the average
shortest path length stopping criterion will achieve a good
performance with either a relatively small q/p ratio (less than
5 in this case) or a medium large q/p ratio (30 ≤ q/p ≤ 110
in this case).

VI. SIMULATION

The simulation program is based on the Python NetworkX
library. To generate a random graph with power law distribu-
tion as well as preferential attachment behaviors, we use the
function nx.barabasi_albert_graph() to create the
baseline graph model and remove nodes uniformly at random
to simulate the situation when nodes drop off the peer-to-
peer network. Furthermore, we also assign the location of file
replicas at random, based on the number of replicas we have.
Every time the program start a new trial, it will generate a new
instance of the random graph with nodes removed, perform a
breadth first search, and record the number of iterations needed
to find a node with the target file. After finishing all trials, it

Fig. 7: Average number of hops needed with assisted search

calculates the average of the subject of interest and plots the
corresponding graph.

For the relationship between number of replica and the
number of hops needed to search a file, the simulation initiates
an experiment with N = 500, T = 3, 2 ≤ r ≤ 8 for
300 trials. Both cases with or without assisted search by the
trusted peers are investigated. If we fit the data points using
scipy.optimize with the formula of E[n] we found in
the model analysis, we get the best fit line as

y =
1

0.665(x+ 1)
(19)

shown as the blue curve in figure 7. This fitted relation is
close to our approximation if we plug the average degree of
non-trusted nodes D = 3 and the total degrees of all trusted
nodes aT > 100 in equation (14), indicating that the model
analysis in the previous section is reasonable. The orange
curve is the best fit line in the logarithm model from previous
research [9], with formula y = −0.315 ln(x) + 1.75. Both
models have a good prediction for the relationship between the
number of replicas and the number of hops for searching a file.
The green curve on Figure 7 indicates the same relationship
without assisted search (i.e. with no trusted nodes). For every
number of replicas, the average number of hops is higher than
the case with assisted search, proving an improvement of the
performance with trusted peers.

Considering the cost, we ran the experiment for a number of
trusted peers. When the cost per machine and cost of searching
time has relatively close value, increasing number of trusted
nodes will only slightly reduce the cost at the beginning and
then escalate linearly, as shown on figure 8. When the cost of
running a machine is less than the cost of searching, the total
cost will decrease more drastically as the number of trusted
nodes increase, as shown on figure 9. These results align with
the analytical calculation from the previous sections.

VII. CONCLUSION

In this paper we derived the relationship between searching
time for a file replica, number of trusted peers, and number
of replicas over a server-mediated peer-to-peer network with
assisted search protocol, and used the cost function to find

Fig. 8: Cost of finding a file replica against number of trusted peers for p = 10
and q = 10

Fig. 9: Cost of finding a file replica against number of trusted peers for p = 10
and q = 90

the optimized setup of number of replicas and number of
trusted peers for minimum cost. Unlike previous research
which focuses on unstructured peer-to-peer networks with the
Erdos-Renyi model, we proposed that the power-law degree
distribution is more realistic. Due to difficulty of computing
a closed form analytical solution, several approximations are
made, while behavior of the cost function still remains as ex-
pected: the cost drastically decreases when number of trusted
peers increases, but the benefit will diminish, as the number of
search hops converges to 1. Once the network builders have the
information about the degree of trusted peers, the mean degree,
and the total number of peers in the network, an analytical
solution can be used for cost reduction, but numerical methods
for finding the minimum may provide more accurate results.

Further research will focus on the impact of cache in the
cost function, since it will introduce an extra cost on cloud
storage correlated with the total size. A higher cache size
will increase the hit rate, which reduce the average searching
cost. These factors may further change the optimal number of
trusted nodes in practice.

ACKNOWLEDGMENT

This research has been supported by Internet Research
Initiative (IRI) program direct by Professor Leonard Kleinrock

at University of California, Los Angeles.

REFERENCES

[1] Solutions, NXT Digital. “Buddybackup: Safe, Free and Secure
Data Backup.” Buddy Backup, https://www.buddybackup.com/about/
how-buddybackup-works.aspx.

[2] Benet, Juan. ”Ipfs-content addressed, versioned, p2p file system.” arXiv
preprint arXiv:1407.3561 (2014).

[3] Kwok, Sai Ho, K. Y. Chan, and Yat Ming Cheung. ”A server-mediated
peer-to-peer system.” ACM Sigecom exchanges 5.3 (2005): 38-47.

[4] Ripeanu, Matei. ”Peer-to-peer architecture case study: Gnutella network.”
Proceedings first international conference on peer-to-peer computing.
IEEE, 2001.

[5] Tewari, Saurabh, and Leonard Kleinrock. ”Optimal search performance
in unstructured peer-to-peer networks with clustered demands.” IEEE
Journal on Selected Areas in Communications 25.1 (2007): 84-95.

[6] Adamic, Lada A., et al. ”Search in power-law networks.” Physical review
E 64.4 (2001): 046135.

[7] Newman, M., Networks, 2nd ed., Oxford University Press, Oxford,
(2018).

[8] Wang, Xiaomin, Fei Ma, and Bing Yao. ”Arbitrary degree distribution
networks with perturbations.” AIP Advances 11.2 (2021): 025301.

[9] Tewari, Saurabh, and Leonard Kleinrock. ”Analysis of search and
replication in unstructured peer-to-peer networks.” ACM SIGMETRICS
Performance Evaluation Review 33.1 (2005): 404-405.

[10] Breslau, Lee, et al. ”Web caching and Zipf-like distributions: Evidence
and implications.” IEEE INFOCOM’99. Conference on Computer Com-
munications. Proceedings. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. The Future is Now (Cat.
No. 99CH36320). Vol. 1. IEEE, 1999.

[11] Kreitz, Gunnar, and Fredrik Niemela. ”Spotify–large scale, low latency,
P2P music-on-demand streaming.” 2010 IEEE Tenth International Con-
ference on Peer-to-Peer Computing (P2P). IEEE, 2010.

[12] Deshpande, Varun, Hakim Badis, and Laurent George. ”Efficient topol-
ogy control of blockchain peer to peer network based on SDN paradigm.”
Peer-to-Peer Networking and Applications 15.1 (2022): 267-289.

