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The M/G/1 queue with rest periods and FCFS order of service was first studied 
by Miller. We give further results concerning the behavior of the delay under 
the FCFS discipline. We then solve for the second moment of the waiting time 
in an M/G/1 queue with rest periods and Random Order of Service (ROS). We 
finally solve for the Laplace-Stieltjes transform of the distribution function of the 
waiting time in an M/G/1 queue with rest periods and nonpreemptive LCFS 
order of service. The relationship found between the second moments of the 
waiting time in an M/G/1 queue with rest periods under the FCFS, ROS and 
LCFS disciplines is precisely that found by Takacs for the M/G/1 queue without 
rest periods. 

TN MOST QUEUEING systems models, an idle server will remain alert 
awaiting a new arrival and will commence service immediately upon 

the customer's arrival. However, in some physical systems an idle server 
will initiate some other uninterruptible task (such as a vacation, a coffee 
break, a telephone call, or a tool change), which we shall refer to as a 
"rest period"; after completing this task, the server returns and begins 
serving any backlog that may have accumulated during its absence. If 
the system is still empty upon the server's return, we assume that it 
initiates another (independent) rest period. 

Of interest in this paper, then, is the study of delays in an M/G/1 
queue with rest periods under the following queueing disciplines, which 
are independent (of any measure) of service time: First-Come First- 
Served (FCFS), Random Order of Service (ROS) and nonpreemptive 
Last-Come-First-Served (LCFS). 

If the order of service is independent (of any measure) of service time, 
then the distribution function (df) of the number of customers in the 
system and the average waiting time can easily be shown to be independ- 
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ent of the discipline, whether there is a rest period or not. The approach 
for showing this statement in the case of an M/G/l queue with rest 
periods is exactly the same as that used in a regular M/G/1 queue 
(Kleinrock [1976] pp. 112-113). In particular, this is true for FCFS, ROS 
and LCFS. 

Section 2 sketches a simple derivation of the z-transform of the df of 
the total number of customers in system in an M/G/1 queue with rest 
periods. This result was first obtained by Miller [1964], who studied the 
FCFS discipline using another approach. Such a model has been partially 
used by Cooper [1970] to analyze a system of queues served in cyclic 
order. Analyses of this system, also called an M/G/1 queue with server's 
vacations or an M/G/1 queue with T-policies, have been studied by Levy 
and Yechiali [1975], Heyman [1977], Heyman and Sobel [1982], and 
Shanthikumar [1980]. 

We next show that the delay in an M/G/1 queue with rest periods 
under the FCFS discipline has the same distribution as the sum of the 
following two independent random variables: the time in system as if 
there were no rest periods plus an additional delay distributed as the 
residual life of the rest period. 

Kingman [1962a] and Takaics [1963] have previously studied and 
reported on the M/G/1 queue (without rest periods) with ROS. In Section 
4 we derive the second moment of waiting time in an M/G/1 queue with 
rest periods and ROS. 

The M/G/1 queue with LCFS order of service (without rest periods) 
has been extensively studied by Takaics [1963], Vaulot [1954] and Riordan 
[1961]. Kleinrock [1976] has derived the Laplace-Stieltjes-Transform 
(LST) of the probability density function (pdf) of the waiting time. 
Following almost exactly the same argument, in Section 5 we easily solve 
for the LST of the pdf of the waiting time in an M/G/1 queue with rest 
periods and LCFS order of service. 

The relationship that we find in Section 6 between the second moments 
of waiting time for the three disciplines (FCFS, ROS and LCFS) in the 
case of an M/G/1 queue with rest periods is precisely that which has 
been found in Tak'acs in the case of a regular M/G/1 queue. 

When solving for the time in a priority queueing system under the 
Alternating Priority Discipline, Miller [1964] first introduced and studied 
the M/G/1 queue with rest periods and FCFS order of service. (In this 
discipline, customers belong to one among N classes. The server contin- 
ues servicing customers of the same class (say i) until they are depleted 
and the server starts servicing customers of another class, followed by 
another class, and eventually again begins servicing customers of class i. 
For class i, the server's rest period is the time elapsing between successive 
visits to the class.) 

The study of multiple access from a set of N data sources to a single 
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packet-switched data communication channel is one among various ap- 
plications of queueing models with rest periods. Scholl [1976] and Klein- 
rock and Scholl [1977] model several multiple access schemes as M/G/1 
queueing systems with rest periods. Time Division Multiple Access 
(TDMA) (Kleinrock [1976], Scholl) is the simplest example. In TDMA, 
each data source generates fixed sized packets to be transmitted on a 
FCFS basis. The system assigns each data source a periodic sequence of 
time slots on the channel (the packet transmission time being equal to 
one slot). The channel slots are usually switched to users in a round- 
robin (i.e. cyclic) fashion. The system can be modeled by MID/I queues 
with a rest period with a service time equal to N slots (1 slot being the 
actual transmission time and (N - 1) slots assigned to the other (N - 1) 
users). The rest period is equal to N slots. 

In the next section, we present the mathematical model of these 
queueing systems with rest periods. 

1. THE MODEL 

Consider an M/G/1 queue with unlimited storage. Let X be the (Pois- 
son) arrival process intensity, and let B*(s) denote the Laplace-Stieltjes 
transform LST of the pdf of the service time with first and second 
moments denoted by E(x) and E(x2) respectively. After completing a 
customer's service, the server will select another customer in queue (if 
any) according to a given order (queueing discipline) and will begin 
service immediately. This M/G/1 queue model is modified as follows: 

If there are no customers in queue waiting for service, the server, 
becoming idle for lack of work, will withdraw from the system for a rest 
period of duration To drawn from an arbitrary pdf with LST P*(s) and 
first and second moments E(To) and E(To2), respectively. At the end of 
the rest period, the server will return and begin to serve the customers 
that have accumulated during its absence according to the same queueing 
discipline. If there is no backlog, the server will take another rest period 
which starts immediately. The rest periods are identically distributed 
and independent of each other and of the arrival and service processes. 

Below, we consider the queueing disciplines, FCFS, ROS and LCFS. 
We first study the df of the total number of customers in an M/G/1 
queue with rest periods. This is independent of the queueing discipline 
when the order of service is independent of service time, so we can 
assume FCFS without loss of generality within this class. 

2. NUMBER IN SYSTEM IN THE M/G/1 QUEUE WITH REST PERIODS 

The main derivation is that of Q(z), the z-transform of the df of the 
number of customers in the system, q, just after instants of a customer's 
departure. Miller shows that the solution at these imbedded Markov 
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points provides the solution for all points in time under steady state 
conditions. 

2.1. The Generating Function of the Number in Queue 

THEOREM (first established by Miller; see also Heyman and Sobel, Levy 
and Yechiali, and Shanthikumar). Q(z) is given by: 

Q(z) = [B*(X - Xz)/XE(To)] (1) 

-[(1 -p)(l - P*(X - Xz))/(B*(X - Xz) - z)] 

where 

p - XE(x). (2) 

In addition, we have 

P [no customers waiting for service just after departure instant] (3) 

_ po = Q(O) = (1 - p)(1 - P*(X))/XE(To) 

The method of proof for this theorem is based on the familiar "imbed- 
ded Markov chain" approach, introduced by Kendall [1951], which has 
become a standard approach in queueing theory (for example, Kleinrock 
[1975] p. 174). Let us define the following sequences of random variables 
related to Cn, the nth customer entering the system at time Tn. 

Xn= service time for Cn 
qn = number of customers left behind by the department of Cn. 

The sequence qn forms an imbedded Markov chain. The solution at 
the departure points will also provide the solution for all points in time 
(see Miller). Equation 1 is obtained by solving for P(z) A E(z?) = 

lim,,E(Zqn). (See Scholl for a detailed proof.) 
Equation 1 can be rewritten as 

Q(Z) = QM/G/1(Z) VO(z) (4) 

where QM/G/1(Z) represents the z-transform of the df of the number of 
customers in a regular M/G/1 queue (Kleinrock [1975] Equation 5.86), 
viz. 

QM/G/1(z) = B*(X - Xz)((l - p)(l - z)/(B*(X - Xz) - z)) (5) 

and Vo(z) represents the z-transform of the df of the number of arrivals 
during a time interval distributed as the residual life of a rest period 

Vo(z) = (1 - P*(X - Xz))/E(To)(X - Xz). (6) 

As is well known (Kleinrock [1975] p. 197), the z-transform of the df of 
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the number of (Poisson) arrivals r, arriving at a rate X during a random 
time interval with LST denoted by T*(s), is E(zr) = T*(X - Xz). Using 
this result in (6), we have 

Vo(z) = Co*(- Xz) (7) 

where CO*(s) is the LST of the pdf of the residual life of a rest period, 
and 

Co*(s) = (1 - P*(s))/sE(To). (8) 

Thus the df of the number of customers in the system behaves as the 
convolution of the two following random variables: 

a. Number in system in a regular M/G/1 queue with the same arrival 
and service processes 

b. Number of arrivals during a time interval distributed as the residual 
life of the rest period. 

We arrived at the result, which is not obvious, by examining our solution 
in (4); note that we have not proven it directly. In addition, by taking 
the first derivative of (4) at z = 1, we obtain the expected number in 
system: 

X= E(x) + X2E(x2)/(2(1- p)) + E(T02)/2E(To). (9) 

The sum of the first two terms of the right hand side of (9) represents 
the expected number in system in a regular M/G/1 queue (the Pollaczek- 
Khinchin formula; see Kleinrock [1975] p. 187). 

By Little's result [1961], the expected time of a customer in the system 
(waiting time plus service time), denoted by E(T), is 

E(T) = E(x) + XE(x2)/(2(1 - p)) + E(T02)/2E(T0). (10) 

Recall that when the order of service is independent of service time, 
the df of the total number of customers in the system, and thus the 
expected time in the system (delay), are both independent of the queueing 
discipline. 

In particular, (1) and (10) hold for FCFS as well as for ROS and LCFS. 

2.2. Server's Busy Fraction and System's Busy Fraction 

The proportion of time the server is busy servicing customers is easily 
shown to be p = XE(x) (see Miller). This result is not surprising. It is 
precisely the busy fraction of an M/G/1 queue with the same arrival 
intensity and the same expected service time. Thus, the busy fraction 
does not depend on the duration of the rest period. If the latter is long, 
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then the (server's) busy period is long, and there are fewer rest periods 
per unit of time. Furthermore, as long as the order of service conserves 
work, i.e. as long as there is neither creation nor destruction of work 
(service requirement) (Kleinrock [1976]), the busy fraction (indeed, the 
busy period) is independent of the order of service (see Scholl). 

Recalling that po denotes the probability that the system is idle, i.e. 
there are no customers waiting for service or being served, we have in a 
regular M/G/1 queue 

P[system idle] = P[server idle] = 1 - p 

while in an M/G/1 queue with rest periods the system's busy fraction is 
larger than the server's busy fraction. In this case, po is given by (3) and 
we have 

po = P[system idle] < P[server idle] = 1 - p. 

3. LST OF THE pdf OF TIME IN SYSTEM FOR FCFS 

From (1) we may easily derive the LST S*(s) of the pdf of time in the 
system, s, where s is defined as the time interval from a customer's 
arrival instant until his service completion. We follow the simple ap- 
proach used in Kleinrock ([1975] Section 5.7) for solving for the LST of 
the time in system from the z-transform of the df of number in the 
system in a (regular) M/G/1 queue and an FCFS order of service. Observe 
(from 2.1) that S*(X - Xz) is the z-transform of the df of the number of 
customers arriving during the time spent in the system by an arbitrary 
customer. But, this number of customers is precisely the number of 
customers that arrive after a given "tagged" customer and that are left 
behind by his departure. Therefore, we may write 

Q(z) = S*(X - Xz). (11) 

By making the change of variable s = X - Xz, we have from (1) 

S*(s) = (((1 - p)sB*(s))/s - X + XB*(s))((l - P*(s))/sE(To)). (12) 

The first factor is the LST of the pdf of time that a customer spends in 
the system in a regular M/G/1 queue with the same arrival and service 
processes (Kleinrock [1975]). The second factor is the LST of the pdf of 
the residual life of a rest period (see (8)). 

From (12) we have 

E[S] = E[T] = E(?M/G/1) + E[residual life of a rest period] (13) 

where E(?M/G/1) is the expected time in the system in an M/G/1 queue 
(Pollaczek-Khinchin mean value formula (Kleinrock [1975])). Obviously, 
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(13) reduces to (10). Also, the expected waiting time in queue, denoted 
by WFCFS, iS 

WFCFS =XE(x2)/(2(1 - p)) + E(TO2)/2E(TO). (14) 

The second moment E[wFCFS] of the waiting time is 

E[WFCFS] = E[wM/C/1] + 2[XE(x2)/2(1 - p)][E(TO2)/2E(To)] 

+ [E(T03)/3E(To)]. 

Kleinrock ([1975], Equation 5.114) gives an expression of the second 
moment E[W2/G/1I of the waiting time in an M/G/1 queue. A simple 
calculation finally gives 

E[FCFS] = [XE(x2)/(1 P)]WFCFS + [XE(X3)/3(l - p (15) 
+ [E(TO3)/3E(TO)]. 

From the form of S*(s) given in (12), we see that s has the same 
distribution as a random variable which is the sum of the following two 
independent random variables (we have not been able to prove this result 
directly): 

* The time in system as if there were no rest periods, plus 
* An additional delay distributed as the residual life of the rest period. 

When the pdf of the rest period is such that any rest period duration 
is less than or equal to any service time, this additional delay t1 is the 
time elapsing between the arrival instant of the first customer (the 
customer who initiates the busy period) and the end of the rest period. 
(As an example, we might consider an MID/1 "slotted" queueing system 
defined as follows. The time axis is slotted; any customer's service must 
start at the beginning of a slot and lasts exactly one slot. Such a system 
can be modeled by an M/D/1 queue with a deterministic rest period, 
whose length is equal to one slot (see Scholl).) Clearly, t1 is distributed 
as the residual life of the rest period, and all customers of a busy period 
incur a time in the system larger than what they would incur if there 
were no rest period, by an amount equal to t1. 

However, this is no longer true if a rest period can last longer than a 
service time. Below, we give two counterexamples in which the additional 
delay is not the same for all users of a busy period and is not the residual 
life t1 of the rest period upon arrival of the first customer, although this 
additional delay is distributed as the residual life of the rest period. 

Our first counterexample is illustrated in Figure 1, where we plot the 
unfinished work, U(t), versus time. Six customers arrive during the rest 
period. However, if there were no rest period, we would observe three 
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U(t) IDLE PERIOD 

t1 

t4 t6 T 1 = 4 
12 -.- T2=4 

__ ~~~T4 =2 

t ~~~~~~~~~~TIME 
C1C2C1C3 C2c3c4c5c4 C5 C6 C6 

(a) M/G/1 QUEUE (Ti = TIME SPENT IN SYSTEM BY 
C , i = 1,2,3,4,5,6) 

U(t) 
T= T1 + t1 

REST PERIOD - T2 + 

Ti T3 + tl 
T= T 

Ti =4 + t1- 11 
r --7 \ T~~5 = T + t1- 11 

2 \T~~~~~6 = 6 + tl1- (I1 + 1 2) 

4 TIME 
ClC2 C3 C4C5 C6 t6 C1 C2C3 C4 C5 C6 

t4 ___ 1 x 
t1 x3 

(b) M/G/1 QUEUE WITH REST PERIOD (T' = TIME SPENT IN SYSTEM BY 
Ci, i = 1,2,3,4,5,6) 

Figure 1. M/G/1 queue: first counterexample. 

busy periods, respectively initialized by customers C1, C4 and C6. The 
waiting time in the system (with rest period) of those customers in the 
first busy period (C1, C2, C3) increases by the unexpired rest period when 
C1 arrives (tl). Clearly this is no longer true for C4, C5 and C6. C4 and C5 

incur an additional delay equal to the unexpired rest period upon C4's 
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arrival (t4) plus the amount of backlog (in seconds of service) accumulated 
before C4's arrival (xi). C6 incurs an additional delay equal to t6 plus the 
amount of backlog accumulated before his arrival (x1 + x2). 

More generally, following Heyman [private communication], we may 
observe that, in a busy period of the system with rest period, any customer 
C incurs an additional delay equal to the residual life of the rest period 
upon the first customer's arrival less his "lost idle period," if any, when 
the lost idle period of customer C is defined as the total time the system 
would have been idle between C1's arrival and C's arrival if there were 
no rest period: C4 and C5 have their waiting time increased by t1 - I1, 
while C6 incurs an additional delay equal to t1 - (I1 + 12). 

Obviously, this additional delay is nonnegative: the fact that C arrives 
in the busy period initialized by C1 implies t1 is larger than C's lost idle 
period. In Figure 1, we assumed that customers arrived before the end of 
the rest period. The above observation is, of course, also true for cus- 
tomers arriving after the end of the rest period. 

Figure 2 illustrates an example where three customers are served in 
one busy period of the system with rest period. If there were no rest 
period, we would observe two busy periods (Figure 2(a)). 

When we introduce a rest period, the first busy period is shifted on the 
time axis by t1 seconds, where t1 is the unexpired rest period when the 
first customer C1 arrives. C1 and C2 incur an additional delay t1, while C3, 
who initiates a busy period (in the system without rest period: Figure 
2(a)), incurs an additional delay fy equal to t1 less his lost idle period 11. 

4. SECOND MOMENT OF THE WAITING TIME WITH ROS 

Below we give the first and second moments WROS and E[W2 Os] of the 
waiting time w in an M/G/1 queue with rest period and ROS. Recall that 
(1) gives the z-transform of the df of the number in system and that the 
expected waiting time must be the same as for FCFS (see (14)). 

Our notation ROS designates that upon completion of service, or upon 
return from a rest period, the server chooses a customer to be served at 
random from among all customers present in the queue. 

Consider a tagged customer K entering the system. Let its waiting 
time be iwv, let w1 denote the waiting time of K if the server is busy, and 
let w2 denote its waiting time if the server takes a rest period. If the 
server is busy (with probability p; see Section 2.2), K must wait a time 
u1 before the current customer's service completion and then a time v1: 

w= u1 + v1. (16) 

If the server is idle (with probability 1 - p), K must wait a time u2 
until the end of the rest period, and then a time v2: 
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U(t) 

Tj= 2 

T2 = 6 
T3= 4 

TIME 

C1 C2 C1 C2 C3 C3 

(a) M/G/I QUEUE (Ti: TIME SPENT IN SYSTEM BY CUSTOMER 
C1, i =1,2,3) 

U(t) 

REST 
PERIOD 

T= T1 + t 

T T2 + tl 

T= T3 + 'y 

TIME 
C C2 C1 C3 C2 C3 

Kt1- -iIi-f 4 1 

(b) M/G/I QUEUE WITH REST PERIOD (T' = TIME SPENT IN SYSTEM 
BY CUSTOMER Ci, i = 1,2,3) 

Figure 2. M/G/1 queue: second counterexample. 

W2 = U2 + V2 - (17) 

WROS = pE(wi) + (1 - p)E(W2) (18) 

E[W2 OS] = pE(W12) + (1 - p)E(W22). (19) 

The derivation of the first and second moments of w1 and w2 follows 
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closely the arguments of Kingman [1962a]. Scholl shows that we have: 

E(w1) = (1/(2 - p))[(2 + p)(E(x2)/2E(x)) (20) 
+ p((XE(x2)/2(l - p)) + (E(T02)/2E(To)))] 

E(w12) 2XE(x3)/(3p(1 - p)(2 - p)) 

+ [XE(X2)]2/(p(l _ p)2(2 p )) 

+ (2p2/((2 - p)(3 - 2p)))(E(To3)/3E(To)) (21) 

+ XE(x2)(E(To2)/2E(To))(2/((2 - p)2(3 - 2p))) 

42 + (2 - P)2/(1 - p)] 

E(w2) = [(2 + p)/(2 - p)][E(T02)/2E(To)] (22) 

E(w22) = (E(To3)/E(To))[IA 

+ p/(2 - p) + 2p2/(2 - p)(3 - 2p)J (23) 

+ XE(X2)[E(To2)/E(To)J((6 - p)/(2 _ p)2(3 - 2p)). 

Substituting (20) and (22) in (18), we verify, as we might expect, that 
the expected waiting time is the same as in an M/G/1 queue with rest 
periods and an FCFS order of service (see (14)): 

WROS = XE(x2)/2(1 - p) + E(T02)/2E(T0). 

Knowing the second moment of the waiting time in both cases (server 
idle or busy), we can finally obtain the second moment of waiting time. 
Substituting (21) and (23) into (19), we have, after some algebraic 
manipulations: 

E[W2OS] = [2/(2 - p)][XE(X3)/3(1 - p) 
+ XE(X2)/(1 - p)(AE(X2)/2(1 - p) (24) 

+ E(T02)/2E(To)) + E(T03)/3E(To)]. 

Comparing (24) and (15), which gives the second moment E[W2CFS] of 
the waiting time in an M/G/1 queue with rest period and FCFS order of 
serivce, we have the following relationship: 

E[w ROs = E[w FCFS]/[1 - (p/2)]. (25) 

This is precisely the result found by Tak'acs relating the second moments 
of the waiting time in a regular (no rest period) ROS M/G/1 queue and 
in a regular FCFS M/G/1 queue. 

5. TIME IN SYSTEM IN AN MIG11 QUEUE WITH REST PERIODS AND. 
LCFS ORDER OF SERVICE 

(We consider only the nonpreemptive case: A new arrival who finds 
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the server busy cannot preempt the customer in service and must wait 
at least until the current service completion. Although straightforward, 
the preemptive resume LCFS discipline, which is not independent (of 
any measure) of service time, will not be studied.) 

Kleinrock ([1976], p. 118) derives the LST of the pdf of the waiting 
time in an M/G/1 queue without rest periods and with nonpreemptive 
LCFS order of service. Following almost exactly the same argument, we 
solve for the LST, W*LCFS(S), of the pdf of the waiting time in an M/G/1 
queue with rest periods and nonpreemptive LCFS order of service. Recall 
that the z-transform of the df of the number in system is given by (1) 
and that the expected waiting time is given by (14) (both independent of 
the order of service). 

A new arrival finds the server either busy (w'ith probability p; see 
Section 2.2) or idle (with probability (1 - p)). 

WLCFS(S) = E[eSW I server busy upon arrival]p (26) 

+ E[eSW l server idle upon arrival](1 - p). 

If the server is busy, the arrival waits only for the customer found in 
service, and its delay is due to arrivals that enter the system after it does. 

Using a delay cycle analysis (Kleinrock [1976] p. 11), we have 

E[e-sw I server busy upon arrival] = Go*(s + X - XG*(s)) (27) 

where Go*(s) is the LST of the residual life of the service time upon 
arrival and G*(s) is the LST of the pdf of the busy period in an M/G/1 
queue. G*(s) is given by the following functional equation (Kleinrock 
[1975] Equation 5.137): 

G*(s) = B*(s + X - XG*(s)). (28) 

Thus we have 

E[e-SW server busy upon arrival] (29) 

= [1 - G*(s)]/[s + X - XG*(s)]E(x). 

If the server is idle, the new arrival waits until the end of the rest 
period, at which instant it begins service only if no other arrival occurred 
in the interim. Consequently, 

E[e-sw I server idle upon arrival] = Co*(s + X - XG*(s)) 

where Co*(s) is the LST of the pdf of the residual life of the rest period 
upon arrival (see (8)). Therefore, 

E[eSW I server idle upon arrival] (30) 
= [1 - P*(s + X - XG*(s))]/[s + X - XG*(s)]E(To). 
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Substituting (29) and (30) into (26), we have the expression for W*(s) 
that we were seeking: 

W*(;s) = (p[l - B*(s + X - XG*(s))]/([s + X - XG*(s)]E(x))) 

+ ((1 - p)[l - P*(s + X - XG*(s))I/([s + X - XG*(s)]E(To))). 

By taking the first and second derivatives of (31) at s = 0, we obtain the 
following expressions: 

WLCFS = XE(x2)/2(1 - p) + E(TO2)/2E(TO) (32) 

E[w LCFS] = [XE(X )/(1 p)2]WLCFS + [XE(X )/3(1 - P)3] 
+ [E(T03)/3E(To)](1/(1 - p)). 

As expected, WLCFS = WFCFS (see (14)), but the second moment E[w LCFS] 
is larger than E[WFCFSI. Comparing (33) to (15), we finally have 

E[w LCFS] = E[w FCFS]/(1 - P). (34) 

It is surprising to find that this result holds for the M/G/1 queue (without 
rest periods) (see Takacs) as well as for the M/G/1 queue (with rest 
periods). 

6. DISCUSSION 

We have studied the M/G/1 queue with rest periods under three 
queueing disciplines independent (of any measure) of the service time 
(FCFS, ROS, LCFS). In the FCFS case (Section 3), we showed that the 
time that a customer spends in the system has the same distribution as 
the sum of the two random variables: 

a. The time in system in an M/G/1 queue with same arrival and service 
processes and FCFS order of service and 

b. A time interval distributed as the residual life of a rest period. 

As we stated earlier, the df of number in system as well as the expected 
waiting time obtained under the FCFS discipline are the same under the 
ROS and LCFS order of service (Section 2). We solved for the second 
moment of waiting time in the ROS case (Section 4) and for the LST of 
waiting time in the LCFS case (Section 5). While the expected waiting 
time is independent of the order of service, the second moment of the 
waiting time is significantly affected by the queueing discipline. From 
(25) and (34) we have the following relationship: 

E[wFcFs] = [1 - (p/2)]E[W OS] = (1 - p)E[w LCFS]. (35) 

Equation (35) holds for the regular M/G/1 queue (see Takiacs) as well as 
for the M/G/1 queue with rest periods. Table I summarizes the results 
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of the waiting time moment calculations for both the regular M/G/1 
queue and the M/G/1 queue with rest periods. In both cases, FCFS 
discipline leads to the smallest second moment of the waiting time, while 
the LCFS discipline leads to the largest one. 

Kingman [1962b] showed that under an arbitrary work-conserving, 
nonpreemptive queueing discipline (independent of the service time), the 
variance of the waiting time in a GIG/I queue is not less than that given 
by the FCFS discipline. Vasicek [1977] showed the following more general 
result: 

THEOREM (Vasicek). The expected value of any convex function of the 
waiting time (such as the variance) in a general single-server queue under 
a general queueing discipline (independent of service time) does not exceed 
that under the LCFS discipline. 

TABLE I 
MOMENTS OF THE WAITING TIME 

Moments of 
the waiting time M/G/1 queue with Rest Period M/GIl queue without Rest Period 

XE(x 2 __E_x2 
E{W} AEl-P) 2E(T0) X(l_P) 

LW2 l AE(x2) ,AE(x2 E(TO) 1 AE x3 E(T) E(x E (x 2)\ E3 
E|FCFS |-p YEl 

- 
2E(TO) J +3E(T0) l-p k 

2(1-px) 3(1-p) 

1 - 

2 1 2 AE(x2) rXE x2 E(Tj) 1 XE(x3) E(To) ) E XE(x )\ XE(x3) 
3 

E Wgs 2p 1X() [3L + 2E 2TXE(x3 l WROS | 2-p } l-p L 2_0) Jo 3(-p) 3E(T0) | 1-p \2(1-p), 3(1-p) 

. . ~ F __ __ __ 1_ __ ._ I__ I 

E I1 (x2) XEx2) E(T0) 1 E (x (x2) l X2Ex3 
E tLCFSi 1-p I l-p 2l 2E(TOJ 3(1-p) 3E(T0)t 1-p 1-p , 

Y2(1-p)) 3(1-p) 

It is easy to extend this result to a G/G/1 queue with rest period (see 
Scholl). 
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