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1.  Introduction

When developing mobil e wireless network systems (i.e., wireless
networking algori thms, node architectures, and network infrastruc-
tures), the designer is presented wi th numerous design alternatives.
There are many factors which impact the analysis, performance and
vali dation of these design alternatives. These factors range from
having to support diff erent patterns of node mobili ty to integrating
the traffi c generators, networking algorithms, and operating system
capabili ties.

 
A few operating system kernels and languages have been

designed to support wireless and mobile communication [1], and a
number of protocols have been devised to solve the numerous
topology setup and maintenance, media access control, and trans-

mission problems in the mobile environment [10]. Commercial
radios designed to be hooked up with laptops for wireless multime-
dia transmissions are available in the market.   Although solutions
to diff erent facets of the wireless mobile information system design
are appearing, relatively li ttle effort has been devoted to under-
standing the performance impact of the interactions among diff er-
ent components of the system.   

Analysis, simulation and measurement have all been used to
evaluate the performance of network protocols and multimedia sys-
tems. Measurement-based approaches are useful only after the sys-
tem has been deployed. Although they offer the most accurate
evaluations of performance problems, they are often inadequate
because it may be infeasible to modify the deployed system to

experiment wi th many design parameters. Even when such modifi-
cations are feasible, the cost of the necessary software and hard-
ware modifications may be exorbitant. Analytical models offer the
opportunity to quickly examine a large parameter space to identify
effi cient configurations; however for complex systems with many
interacting components, analytical models may either be inaccurate
or computationall y intractable. For complex, heterogenous systems,
simulations are often the only realistic alternative to performance
prediction.

 
The primary drawback wi th detailed simulation models is that

they are frequently slow. Experience with many existing network
simulators has shown that a performance study of wi reless proto-
cols for even small networks (tens of nodes) can take many days;
running such simulations for networks involving a large number of
mobil e elements is clearly infeasible. Recent experience with paral-
lel execution of models for personal communication systems has
shown that parall elism offers significant potential to improve the
execution time for these models; it is likely that these techniques
can also be exploited to improve the execution time for simulation
models of wireless networks. This paper describes a simulation

environment for wireless networks that is built using the Maisie [3]
simulation language. Maisie has been implemented on both sequen-
tial and parall el architectures. The paper describes the environment
and presents experimental results using sequential execution of the
models. The environment is currently being ported to a parall el
architecture.

 
The remainder of the paper is organized as follows: Section 2

begins with a description of the primary components which make
up mobile wireless systems. Section 3 describes the new simulation
environment used to analyze the performance of such systems; we
see how the environment and various models of the system are built
using an existing message-passing based simulation language
called Maisie. Section 4 presents the results of a simulation study to
evaluate the performance of a specifi c mobile wi reless multimedia
system that is being designed at UCLA. Experiments to vali date the
simulation are also presented. In Section 5 we see the related work
in this area, and Section 6 is the conclusion.
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2.  Mobile Wireless Systems

We provide a common reference model for these systems by
decomposing them into two primary subsystems: network and
node. The node level is used to describe the hardware and software
capabili ties of the (possibly) mobile node including its radio char-
acteristics and its interface to the network operating system. The
network level describes the architecture of the communication net-
work which may be wirelined, wi reless or a hybrid. In this section,
we describe each of the layers in detail, and develop simulation
models for these layers in Section 3.

2.1 Mobile Wireless Networks

Figure 1 is an example of a mobile wireless network. This net-
work is composed not only of a static wired backbone and a few
wireless cells, but also a set of nodes which are able to support
instant infrastructure, self-configuring, and multi-hop functionality.
We include throughout this paper the study of instant infrastructure

networks [14], nodes and their algori thms since support for this
architecture requires additional fl exibi li ty in the simulation envi-
ronment and ill ustrates the complex environment in which the
mobile wireless network systems can operate.

2.2 Mobile Wireless Nodes

The design of mobil e wireless nodes/terminals have been studied

by various groups [17][14]. In this section we describe the compo-
nents which make up the node architecture and the implementation
of the network control functions, multimedia support, communica-
tion substrates, and the interfaces between them. Our focus is on

one of the elements shown in Figure 1, namely the wireless node; it

is represented by the mobile node components shown in Figure 2.
In the following subsections, we wi ll  describe various components
and algori thms which make up the mobile wireless nodes.

2.2.1  Applications

The standard set of TCP/IP protocol suite applications support
text based services like remote login or fi le transfers. New appli ca-
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tions are now appearing which support multimedia (e.g., Netscape
and video conferencing appli cations). Multimedia support is neces-
sary not only for acquisition and presentation of video, speech, and
data but also for coding/decoding for eff icient transmission through
the wireless network. To demonstrate multimedia effects over
mobil e wireless networks, a video conferencing application has
been developed. This appli cation (VideoTALK) brings together
video, which uses UDP, and data, which uses TCP, into a single
application on the laptop. To test the performance of the system for
these appli cations, testing tools were developed to measure
throughput, delay, packet loss, and to track adaptive parameters in
the communication device (radio) such as code, power, and spread-
ing factor (i.e. chips/bit). A topology analyzer program (TOPO)
was developed which can be used in the simulation environment or
in the implemented system to graphicall y display the vi rtual topol-
ogy of the wi reless multihop subnet. These tools and appli cations
are used for experimentation and vali dation with simulation.

2.2.2  Operating System

The operating system is responsible for integrating all these net-
work control components together. The choice of an operating sys-
tem, such as Microsoft Windows, PC-Disk Operating System
(DOS), Mac OS, or UNIX, can have signifi cant impact on the
node’s capabili ties and performance. However, these systems are
not designed for ease of programmabili ty or fl exibili ty in the imple-
mentation and validation of networking algori thms and thus do not
lend themselves to a flexible mobile wi reless network system which
can be used for experimentation or prototyping. An operating sys-
tem is desired which is compatible with existing platforms (but still
provides functionality such as multi -tasking and packet processing

Fig. 2.  Mobile Node Components
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capabili ty useful  to network control algori thms) and can be easil y
modeled in the simulation environment. A network operating sys-
tem is able to function on a layer on top of an existing native operat-
ing system and provide the required network functionali ty and
services. A publi c domain network operating system, NOS (also
known as KA9Q developed by Phil  Karn), has readil y avail able

source code and meets the fl exibili ty requirements[5]. We use NOS

as the operating system in our mobile wireless system (see Figure

2). It runs on top of DOS and includes its own multi tasking sched-
uler. The benefi t of this multitasking operating system is that each
algorithm or protocol necessary to support this network can be
developed as its own process. The multitasking kernel all ows these
algorithms and protocols to multitask, sharing the CPU, and yet
provide semantics such as wait and signal semaphores for inter-pro-
cess (inter-algori thm) communication. Time processing routines,
such as TDMA , are able to sleep a process for a defined period of
time, and can be used to all ow other protocols and algorithms to run
without halting or consuming unnecessary CPU processing time.
Memory buffers (mbufs as found in BSD UNIX system buffers) are
used to minimize overhead by all owing memory blocks to be linked
together for performing encapsulation, packetization, etc.

The architecture of our mobil e wi reless system test-bench is set
up to maximize the fl exibili ty for supporting various types of
mobile system components. Our current test-bench uses a NEC
Versa 486 33Mhz laptop and a docking station to support the cus-
tom interfaces and hardware. The network operating system is able
to run on any laptop as long as it supports DOS and the required

interface cards. A Packet Interface (PI) card is used as the network
interface card to integrate the wireless communication hardware
into the system. To provide a standard interface to the network
operating system, a packet driver interface is used, based upon
FTP’s packet driver specification. This interface all ows inter-
changeabili ty among various network interface cards (l ike the PI
card or a PCMCIA card) without having to change the detail s of the
network operating system to support a new or diff erent communica-
tion substrate. A packet driver is loaded which corresponds to the
correct Network Interface Card (NIC) and its capabili ty. There are
also other communication hardware drivers/interfaces such as the
NDIS or ODI drivers which can be used to integrate the communi-
cation hardware with the operating system.

2.3 Mobile Wireless Algorithms

2.3.1  Transport and Internetworking Control

Since internetworking requires compatibili ty wi th existing net-
works and TCP/IP is so widely used through the Internet, the TCP/
IP protocol suite has been implemented without need for modifi ca-
tions. Since the Internet Protocol can be used in conjunction with
various communication substrates, much of the new mobile wi re-
less algorithm development takes place below the network layer.
The network layer is responsible for supporting various communi-
cation substrates such as internet routing, segmentation, etc. Above
the network layer, the transport protocols (TCP and UDP) provide
the required support for end-to-end reliabili ty, congestion control,
etc. These transport protocols interact wi th the applications
described in the previous section by using sockets to buffer the bit
stream so packetization can take place. Additional services are also

being developed to support multimedia over mobile hosts [13].

Although wireless communication is useful to support mobile
communication, wired connections can support a much higher
bandwidth and are less prone to errors then wireless radios. There-
fore, wired connections should be utilized whenever possible.
Wired connections, such as ethernet, can utili ze standard communi-
cation hardware, such as a PCMCIA card, for networking. To sup-
port a combination of wired and wireless communication, provide
wireless multihop functionali ty, and support instant infrastructure
networking, a node needs to be able to function in three diff erent
modes (gateway, multihop, or end node) as shown in our common

reference model (Figure 3). A node functions as a gateway when

both wi red and wireless connections are avail able. In the gateway
mode, it wi ll  forward packets between the wi red and wi reless
domains as necessary. In the multihop mode, it will  foll ow the sub-
network routing protocol to provide wi reless multihop communica-
tion within the instant infrastructure subnet. Other mobile wi reless
network systems do not provide instant infrastructure or wi reless
multihop capabili ty, but do support wireless mobili ty throughout an
internet.

The IETF Working Group for Mobile IP has developed an Inter-

net Draft for IP Mobili ty Support [12]. The primary focus of this
group has been on protocol functionality and standards, rather than
performance analysis. By incorporating the Mobil e IP type protocol
into this simulation environment, feedback can be provided to
developers on its performance as a function of various mobili ty
environments, network connectivity substrates (wi reless and
wired), and various traff ic loads. The Mobil e IP protocol can also
be integrated with numerous other system components.

The analysis of the Mobil e IP protocols will  be useful to validate
and enhance the simulation environment and can utili ze the proto-
typing implementation path. In addition to protocol designers, the
prototype can provide immediate feedback to interested groups that
are developing protocols in conjunction wi th Mobile IP to support
other network and operating system functionali ties.   

Fig. 3. Common Reference Model
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2.3.1  Instant Infrastructure Subnetwork Control

The functionali ties which support instant and reconfigurable net-
works are new and have been added into the network algori thms

under subnetwork control (see Figure 2). Many of the proposed
schemes for supporting instant and reconfigurable network topolo-
gies are based upon TDMA  to control channel contention. A clus-

tering algorithm [10] was implemented which is heavily based on
TDMA  control and synchronization to test the feasibili ty and over-
head of implementing this functionali ty in software.

2.4 Link Layer Control

Algorithms developed for link layer control fall  into a separate
category from other networking algori thms. These algori thms are
not typicall y implemented inside the operating system, usuall y
existing in hardware or programmable processors as part of the
NIC. For maximum flexibili ty, simplicity of implementation, and to
provide a path between simulation and implementation, these algo-
ri thms could be implemented as part of the algori thms in the operat-
ing system. To experiment and determine where an algorithm
should be implemented, the simulation environment can utili ze
models or actual code of the l ink layer control algorithms. 

The li nk layer control components typicall y include algori thms
such as media access control (e.g., CDMA, TDMA , and CSMA /

CA). The link and mobili ty control layer shown in Figure 2 sup-
ports a new function unique to instant infrastructure mobile wi re-
less networking. Mobili ty support is provided by setting
appropriate hardware parameters such as the CDMA code or trans-
mit power level dynamically. Measurements such as Signal to Inter-
ference Ratio (SIR) are fed back from the radio into the link control
algorithms for power control to minimize the power consumption,
reduce interference, and provide admission control such as

described in [7].

2.5 Wireless Communication Hardware

Numerous wireless radio modems are available commerciall y

[9]. Many of the algori thms being designed for mobile wi reless sys-
tems are built to support a particular device or manufacturer. Algo-
ri thms which are not designed for a specific radio face the problem
of trying to predict their performance over a wide parameter space
of available radio alternatives. The best way to vali date over a wide
parameter space of various radios is to utili ze the models of the var-
ious radios in the simulation environment and experiment with
actual implementation when feasible.

As an example of the complexity and trade-offs associated with
developing wi reless networking algorithms with wireless commu-
nication hardware, we experiment wi th two wi reless communica-
tion hardware devices. We use the Proxim RangeLAN2 wireless
frequency hop spread spectrum radio, which is commerciall y avail -
able, and a custom direct sequence spread spectrum radio, designed

and implemented at UCLA [8]. The UCLA radio is used to support
instant infrastructure networking through adaptive hardware control
and feedback with the networking algorithms. This radio is cur-
rently able to operate at speeds from 7 to 32 Kbps depending on the
desired spreading factor. Although other radios are able to support
higher data rates, this radio provides unique control over various

hardware parameters such as the spreading (chips/bit), code, power,
and even acquisition time. In Table 1 we can see the spreading fac-
tor (chips/bit), data rate, and acquisition time trade-off s. It should

take anywhere from 500 to 1000 data bits to acquire the signal so a
preamble is sent before each packet according to the desired acqui-
sition time. Since the radio transmits at a fixed rate of 1 Mchips/sec,
and we are able to vary the number of chips/bit, we are able to
achieve the various data rates described above. In order to increase
the resili ence to noise and interference, a parameter can be set on
the radio to increase the spreading factor (chips/bit) at a cost of
decreasing the data rate. By using more chips/bit (slower data rate)
we are also able to potentially have higher node capacity in the
wireless sub-net. It is up to the network control algori thms, wi th
development and analysis support from the simulation environ-
ment, to dynamicall y determine what these parameters should be
set at for optimum network effi ciency. 

3.  Simulation Environment

We have designed a general purpose parallel environment for the
simulation of mobile wi reless network systems and to provide an
implementation path for networking algori thms. The simulation
environment can be used to evaluate the effectiveness and perfor-
mance of algorithms as a function of the application requirements,
mobili ty patterns, and radio characteristics. The simulator is being
built on top of an existing message-passing based parallel simula-

tion language call ed Maisie [3]. Maisie is a message-based discrete
event simulation language that provides a ri ch set of modeling con-
structs to facili tate the design of concise network models. The
Maisie simulation environment has been implemented on a variety
of workstations, networks of workstations and distributed memory
multicomputers (l ike the IBM SP1) and on a shared memory Sparc
1000. In the following sections we will  see how the Maisie con-
structs are used to develop various modules in the network simula-
tion environment.

The proposed simulation environment has a number of unique
features: fi rst, it is being designed to make effective use of the facil-
ity for parallel model execution that is supported by Maisie. This
potential for parallel execution of the models will  allow us to inves-
tigate much larger networks than would otherwise be feasible. Sec-
ond, the environment will  support automatic migration of the
simulation models to operational code by providing a common set
of interfaces to widely used network operating systems and their
models. Third, the simulation environment includes a facili ty for
interactive control of key model parameters l ike mobili ty, transmis-
sion power, etc. This facili ty will  all ow an analyst to interactively

chips
per 
bit

Data 
Rate

(kbps)

Optimistic
 ACQ 
Time

Conservative
 ACQ 
Time

31 32.258 15.5 ms 31 ms

63 15.873 31.5 ms 63 ms

127 7.824 63.5 ms 127 ms

Table 1: UCLA Radio Parameters



evaluate the impact of various changes to the hardware and protocol
parameters. Lastly, the environment is modular and extensible, in
the sense that diff erent components of the mobil e network can be
modeled at different levels of detail . Thus, it can be useful  to
develop in a simulation which utilizes several different levels of

detail  [2]. 

The modeling environment is designed to allow the primary
components of the wireless network system to be simulated at dif-
ferent levels of detail . Thus, it might be useful to initiall y have an
approximate but fast model of all  components and then refine the
details of some of the components that appear to be the primary bot-
tleneck(s). Our aim is to decompose the model in order to allow
maximum flexibili ty in experimentation with alternative implemen-
tations of a given functionality (e.g. mobili ty patterns of the node)
as well as to support a ‘‘ plug and play’’  capabili ty that generates
composite models constructed from pieces that model system com-
ponents at widely diff ering levels of detail .

3.1 Mobile System Simulation Modules

Our model of the mobile, wi reless network system is broken
down into two levels with the following primary components:

Network Level
• Node Mobili ty Models (MOM)
• Channel Models (CHM)

Node Level
• Wireless Radio Models (RFM)
• Operating System Models (OSM)
• Appli cation-specific traffic models (SOURCEM)
• Network Algorithm Models (NAM)

The MOM components are responsible for movement patterns of
the nodes, such as the speed in which the nodes move, and their
motion pattern, such as Brownian random motion or dri ft. The
CHM components are responsible for the transmission media
including the range in which two nodes are able to communicate
with each other, and environmental effects such as multi-path fad-
ing, shadowing, and interference.

The RFM components are responsible for the physical layer
modeli ng of the radio frequency modem and includes the raw chan-
nel bandwidth, modulation techniques, and acquisition delays. The
OSM simulates the relevant portion of the operating system, such
as the WAMI S Network Operating System (WAMI SNOS) kernel,
and is involved in interfacing wi th the appli cation (e.g. delivery of
incoming messages) or with the network (e.g. transmission of
remote messages). The OSM components include multi -tasking
process scheduling, packet manipulation routines, time control, and
interfacing such as between the SOURCEM and NAM and between
NAM and RFM.

The SOURCEM components can be broken down into the source
and destination streams (e.g., hard disk, keyboard, camera, screen,
microphone, or speaker) corresponding to the voice, video and data
traffic, control of these streams via the appli cation, and the trans-
port mechanism (e.g., TCP, UDP, or Virtual Circuits) which the
appli cation chooses to use. The NAM components are broken down
into internetwork models such as IP, instant infrastructure subnet-

work control (such as clustering), and mobili ty control (such as
power control, logical l ink control, and media access control). 

Figure 4 ill ustrates how the mobil e wi reless system simulation

models fit in with the common reference model described earli er

(Figure 3). 

Before providing examples of how the various models can be

developed using Maisie in Section 3.3, a brief overview of the
Maisie simulation language is provided in the following section.

3.2 The Maisie Language

A Maisie program is a coll ection of entity defi nitions and C func-
tions. An entity definition (or an entity type) describes a class of
objects. An entity instance, henceforth referred to simply as an
entity, represents a specific object in the physical system and may
be created and destroyed dynamicall y. An entity is created by the
execution of a new statement and is automatically assigned a
unique identifier on creation. For instance, the foll owing statement
creates a new instance of a manager entity and stores its identifier in
variable r1. 

r1 = new manager{N};  
An entity can reference its own identifi er using the keyword self.

Entities communicate with each other using buffered message-pass-
ing. Maisie defi nes a type called message, which is used to defi ne
the types of messages that may be received by an entity. Definition
of a message-type is similar to a struct; the following declares a
message-type call ed req with one parameter (or fi eld) called count.

 message req {i nt count; } ;
Every entity is associated wi th a unique message-buff er. A mes-

sage is deposited in the message buffer of an entity by executing an
invoke statement. The foll owing statement will  deposit a message
of type req in the message buffer of entity m1. The message will
have time stamp clock+t, where clock is the current value of the
simulation clock.

invoke m1 with req(2) after t

Fig. 4. Mobile System Simulation Models
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If the after clause is omitted, the message is time stamped with
the current simulation time. If required, an appropriate hold state-
ments (described subsequently) may be executed to model message
transmission times or a separate entity may be defi ned to simulate
the transmission medium. An entity accepts messages from its mes-
sage-buffer by executing a wait statement. The wait statement has
two components: an optional wait-time (tc) and a required resume-

block. If tc is omitted, it is set to an arbitrari ly large value. The

resume-block is a set of resume statements, each of which has the
foll owing form: 

mtype(mi) [st bi] statementi;

where mi is a message-type, bi an optional boolean expression

referred to as a guard, and statementi is any C or Maisie statement.

The guard is a side-effect free boolean expression that may refer-
ence local variables or message parameters. If omitted, the guard is
assumed to be true. The message-type and guard are together
referred to as a resume condition. A resume condition wi th mes-
sage-type mi and guard bi is said to be enabled if the message buffer

contains a message of type mi, which if delivered to the entity

would cause bi to evaluate to true; the corresponding message is

call ed an enabli ng message.

With the wait-time omitted, the wait statement is essentially a
selective receive command that all ows an entity to accept a particu-
lar message only when it is ready to process the message. For
instance, the following wait statement consists of two resume state-
ments.   The resume condition in the first statement ensures that a
req message is accepted only if the requested number of units are
currently avail able (the keyword msg refers to the message that was
most recently removed from the message buffer of the entity.) The
second resume statement accepts a message of type free from its
buffer: 

wait until
{   mtype(req) st (units >= msg.req.count)     
  /*  signal requester that request is granted */
  or  mtype(free) /*  return units to the pool * /
}

Maisie also provides a number of pre-defi ned functions that may
be used by an entity to inspect its message buff er. For instance, the
function qsize(mt) returns the number of messages of type mt in the

buffer. A special form of this function called qempty(mt) is

defined, which returns true if the buffer does not contain any mes-
sages of type mt, and returns false otherwise. In general, the resume

condition in a wait statement may include multiple message-types,
each with its own boolean expression. This all ows many complex
enabling conditions to be expressed directly, without requiring the
programmer to describe the buff ering expli citly. 

If two or more resume conditions in a wait statement are enabled,
the time stamps on the corresponding enabling messages are com-
pared and the message with the earli est time stamp is removed and
deli vered to the entity. If no resume condition is enabled, a timeout
message is scheduled for the entity tc time units in the future. The

timeout message is canceled if the entity receives an enabli ng mes-
sage prior to expiration of tc; otherwise, the timeout message is sent

to the entity on expiration of interval tc. Thus the wait statement can

be used to schedule conditional events. A hold statement is pro-

vided to unconditionally delay an entity for a specified simulation
time. For instance, the statement hold(t) will  suspend the corre-
sponding entity for t units in simulation time.

3.3 Simulation Environment Modules

The simulation environment models are broken down into two
categories: global and local. The global models are responsible for
modeling the interaction among the nodes at the network level. The
global models include the mobili ty (MOM) and channel (CHM)
models. The local models are responsible for modeli ng the func-
tionality inside a node. Local models inside a node (inter-node) can
be highly integrated. The global models are used for all  inter-node
communication.

Let us now look at the details of some of the responsibili ty of
each module is and an example model of one of the components.

3.3.1  MOM

The mobili ty models include, but are not limited to, the following
components:

• tracking location of the nodes
• speed of the nodes
• direction of motion

In order for the channel model to track the location, and thus
have the channel model be able to determine which nodes are able
to send packets to each other, the x and y coordinates of each node
are tracked. Since the mobili ty model is responsible for tracking the
location of each node, a node can not simply update its position
locally but must send a message to the mobili ty model to have it
update the node’s new location so the channel model which is coor-
dinating communication in that area can utilize the node’s location
information. 

In order to model speed (such as stationary, walking speed, run-
ning speed, driving speed, or even fl ying speed) and direction of
motion (such as dri ft or a semi-random walk), the channel model
can select a random step size which it is able to move within. Once
the new position is selected and forced to remain wi thin the space
(grid) of the simulation, its new position is updated.

To get a feeli ng for an example model of mobili ty, the following
Maisie fragment shows how the speed of a mobil e can be modeled
wi th a semi-random direction.
entity mom{}
{
  for (;;)
  {
    wait until
       mtype(move) 
      {
        id=msg.move.id;
        position[id].x =
               position[id].x-(int)lrand48()%(SPEED*2+1)+SPEED;
        position[id].y =
              position[id].y-(int)lrand48()%(SPEED*2+1)+SPEED;
       if (position[id].x<0)  position[id].x=0
          else if (position[id].x>max_x) position[id].x=max_x;
       if (position[id].y<0)  position[id].y=0
         else if(position[id].y>max_y)  position[id].y=max_y;



      }
     or mtype(done)
     {
       break;
      }
  }
}

3.3.2  CHM

The channel model is responsible for determining which nodes
are able to communicate with each other and what the received
information or quali ty of information should look like. The CHM
components can include, but are not limited to, the following:

• Distance/Range
• Shadowing (such as Log-normal)
• Attenuation (such as Free-Space)
• Multi-path (such as Raleigh Fading)

Once the channel models determine the effects of transmitting
data through the wireless channel, the radio RFM models can inter-
act in a reali stic manner.

The following Maisie fragment represents a portion of code in
the channel model to model radio broadcasts. The model uses the
transmit power and current location of each node to determine
which nodes receive an incoming packet. The actual packet (mes-
sage) is sent to the appropriate node via the invoke statement.

entity chm{}
{
   ...
    wait until  mtype(broadcast)
   {
    b = msg.broadcast;
    for (i=1; i<=num_nodes; i++)
        if (i != b.id)
            if  (sqrt(pow((double)(position[b.id].x - position[i].x ), 2.0) + 
pow((double)(position[b.id].y-position[i].y), 2.0)) < (double) 
COMM_RANGE)
               invoke pktdrvr[ i] with pktin{ b.id,b.info};  
    }
    ...
}

In order to simulate the packet transmission time through the
channel, the transmitter should advance the simulation clock by the
time needed to send the bits out the radio. This can be done using
the Maisie hold statement.

hold(TXTI ME);
The transmit time (TXTIME) is determined by the RFM and is

based upon factors such as the bandwidth, packet size, and physical
layer headers.

3.3.3  RFM

The RFM module is a local model which is responsible for the
data link and physical layer modeling inside the node layer of the
radio frequency modem, and includes, but not limited to, the fol-
lowing components:

• li nk level media access control algorithm
• NIC interfacing overhead
• acquisition delays

• raw bandwidth (data rate)
• modulation techniques (spread spectrum direct sequence 

or spread spectrum frequency hop)

Any time a packet is to be sent over the wireless channel, the
media access control algorithm is responsible for determining if or
when that packet can be transmitted. A common media access con-
trol algori thm is the Carrier Sense Multiple Access/Colli sion
Avoidance algorithm such as found in the IEEE 802.11 specifica-
tion. This will  impose a delay and bandwidth overhead for every
packet sent. This algori thm can be modeled inside the simulation
environment to not only test feasibili ty and performance but also to
see the impli cation on other aspects of the node and network. The
analyst could also choose not to model the CSMA /CA algori thm
itself but simply provide a metric in the RFM as the setup time
before a packet can be transmitted and include this as part of the
signal acquisition time (pre-amble). 

Other link level control algori thms such as CRC checking, pre-
amble, bit stuffing, etc. can be modeled at various levels of detail s.
The model can include the details of the bits being transmitted or
model this overhead by holding the RFM from being able to trans-
mit for the period of time it would take to do such link level control
processing.

The raw bandwidth affects how long it takes for a packet or bits
in the packet to propagate to the next node dependent on certain
parameters of the radio being used. Given the packet size, we can
use the data rate to model how long it will  take for the packet to be
transmitted through the wireless channel. 

For the UCLA radio described, the RFM parameters include
50ms for acquisition (pre-amble) of each packet, 10ms for tail  pro-
cessing (post-amble) on each packet, and a raw channel rate of 32
Kbps. The actual transmission time through the air can be deter-
mined in conjunction with the channel model since the transmission
time (TXTIME) can be calculated as foll ows:

The modulation technique used, whether it be DSSS or Fre-
quency Hop Spread Spectrum (FHSS), both effect the simulation
environment. In a DSSS modem, the amount of spreading (chips/
bit) of the original signal, or in a FHSS modem, the number of fre-
quency bands which overlap, and thus the number of available
(CDMA) codes affect the usefulness and reli abili ty of the wi reless
channel (CHM) and simulation as a whole.

The most critical part of the simulation environment which inte-
grates the various components and can have a significant impact on
the simulation as a whole is the operating system.

3.3.4  OSM

The Operating System Model has three primary components:
• kernel model
• appli cation interface model
• network interface model

TXTIME AcqTime
PktSize 8•
DataRate---------------------------- Tail Time+ += (1)



 
The kernel model provides the basic functionality needed to sim-

ulate a multi -tasking OS kernel. It models a (dynamic) set of inter-
acting processes, where each process is simulated by a Maisie
entity and the inter-process communication and synchronization is
simulated by appropriate message communication among the corre-
sponding entities.   Henceforth, we use the term ‘‘ kernel entity’’  to
mean a Maisie entity that is simulating a NOS kernel process. 

 The KA9Q kernel uses interrupts to interface with many of its
drivers; hence the kernel entity used in the simulation environment
models also supports interrupts. The entity may (dynamically)
specify  the set of enabled interrupts. A common source of interrupts
in the kernel is the arri val of a packet for the corresponding entity.
We present a short Maisie fragment to ill ustrate the handli ng of an
interrupt call ed ‘‘ pktin’’  by a kernel entity called ‘‘ wproc’’ . The
wait statement on the following fragment models an interruptible
activity. The time specifi ed in the wait statement is initially set to tc,

which models its execution time in the absence of any interrupts. If
an interrupt (pktin) is received during this interval, the entity sus-
pends normal operation, executes a pre-specified routine to handle
the interrupt, and suspends itself for ti time units, where ti models

the time taken to execute the interrupt handling routine in the phys-
ical kernel. Note that this model assumes interrupts cannot be
nested, because a hold statement is used to simulate service of the
interrupt. It is possible to instead use an interruptible wait statement
to model nested interrupts. After executing the hold statement, the
entity again executes the wait statement with an updated wait-time
to complete the simulation of the original activi ty. For simpli city all
time units are expressed as integers in this fragment. The function
clock() returns the current value of the simulation clock.

entity wproc{ id,pktdrvr,ipalgptr,tc,ti}
int id; /*  My Node ID */
ename pktdrvr; /*  Pointer to Packet Driver Interface * /
ename ipalgptr; /*  Pointer to IP Protocol Processing Routine * /
int tc; /*  Initi al Execution Time * /
int ti; /*  Interupt Handling  Routine Time * /
{
  message pktin{in t pkttype; int len; int id; int info;}  pkt;
  int newlen, remtime, endtime;
 
  for (;;)
  {  endtime=clock()+tc;
    remtime=tc;
    for(;;)
     wait remtime until  
     {  mtype(pktin)
       {  pkt=msg.pktin;

         if  (pkt.pkttype==clust_type)
           clust_got_pkt(id,neighbor,I_am_ch, pkt.id,pkt.info)

         else if  (pkt.pkttype==ip_type)
           ip_got_pkt(id,newlen,pkt.id,pkt.info, pktdrvr,ipalgptr);

         remtime=endtime-clock();
         hold(t1);

       }
       or mtype(timeout)   break;
     }
  }
}

The application interface model interacts wi th the SOURCEM
model to both accept a message for deli very to another node and
also to deli ver an incoming message. In either case, the kernel pro-
vides the interface needed by the appli cation to the network and
simulates the software delays that are typically suffered by the mes-
sage as it passes through the kernel of an operational OS. This delay
can be simulated either by doing a detail ed (and hence time-con-
suming) simulation of the various kernel modules, or approximated
by simply delaying the message by a randomly distributed value,
where the distribution is chosen to reflect the aggregated behavior
of various kernel modules.

 Similarly, the network interface model will  determine the trans-
mission mode of the message (e.g., datagram or bit stream) and pro-
vide the message to the NAM in an appropriate format from the
network interface.   A driver such as the packet interface driver is
typicall y used as the NIC interface. Note that the kernel delays can
be simulated either in the application or the network interface
model (or both), depending on the analyst and the appli cation being
simulated. The applications are represented in the system as the
source model.

3.3.5  SOURCEM

The SOURCE models are composed of, but not limited to, the
following components:

• source & destination streams
• appli cation control
• end-to-end transport mechanisms

One of the primary uses of the mobil e wireless network nodes are
to exchange data, voice, or video. The input or source of the data,
voice, or video usuall y comes from either the hard disk, memory,
keyboard, microphone, or camera. The output or destination usually
goes to either the hard disk, memory, screen, or speaker. Depending
upon the analyst’s need, it is typically not required that the actual
data, voice, or video images be sent from one source stream to the
destination but rather modeled based upon certain characteristics.
The characteristics modeled for the hard drive and memory include
read and wri te access time, models of the voice streams include the
rate and silence characteristics, and models of the video stream usu-
all y include the frame size, frame rate, and other control informa-
tion such as frame delimiters.

The application control component is responsible for controlli ng
the source and destination streams in conjunction with the transport
protocols. The application affects the environment such as by deter-
mining if, when, and what data, video, or speech should be sent.
Typical applications used in the mobile wi reless system imple-
mented include the standard TCP/IP applications such as FTP and
telnet along wi th custom multimedia appli cations such as a video
conferencing (VTALK) application. 

In order to deli ver the streams of data, video, and speech an end-
to-end transport mechanism is used. These protocols typically
include TCP and UDP for data and usually virtual circuits for multi-
media in order to provide bandwidth all ocation. Typical functional-
ity of the transport protocols include providing flow control, error
detection and possible retransmission of lost or corrupted data, and



acknowledgment of data received. As an example, we can see in the
foll owing Maisie fragment the functionali ty of TCP and FTP used
in a fi le transfer to send data, check for acknowledgments of sent
data, and retransmit lost packets upon a time-out.

 for (i=MSS;i<FILE_SIZE-MSS;i=i+MSS)
 {
   wait RTO until /*  RTO = Round-trip TimeOut */
   {
     mtype(ack); /*  Packet Received * /
     or mtype(timeout) /*  Pkt or ACK Lost */
       i=i-MSS; /*  Resend last packet */
   }     
   /*  Generate ftp packet * /
   sendpacket(pktdrvr, ftp_type, id, 0, i, MSS); 
                  /*  Type, From, To, Info, Len * /
   num_pkts_out[id]++;      
}

In order to model the source and destination streams, appli cation
control, and transport mechanism, traff ic generators are used to
generate the data streams corresponding to the voice, video, or data
traffic expected to be generated by the diff erent types of appli ca-

tions.  Table 2 li sts a set of example applications. For each appli ca-

tion, the transport protocol that is commonly used, typical packet
size, traffic type, and metri c to be optimized is l isted.

3.3.6  NAM

The network algorithm model components are the focus for those
developing wi reless and mobile networking algorithms. We break
the Network Algorithms Models into the foll owing layers:

• network layer
• sub-network layer
• data li nk layer

The network layer components include the internetworking func-
tionali ty. The Internet Protocol is commonly used either in its
entirety or just a model of IP to provide functions such as domain

Appl. Trans.
Pkt. 
Size

Traffic
Burstyness Goal

FTP TCP Large Low Max.

Throughput

telnet TCP Small High Mi n. 

Delay

vtalk:

data

 &

video

TCP

UDP

Small

Large

High

Low

Min 

Delay

Max 

Throughput

video V.C. Large Low Max. 

throughput

speech V.C. Small High Delay & 
Throughput

Table 2: SOURCEM Characteristics

addressing, routing, segmentation, and reassembly. Other protocols
modeled in this layer include the ICMP for control messages and

Mobil e IP [12] for mobili ty tracking and support of roaming
through the internet. 

The wireless subnet, whether it be a base station and its clients or
a wi reless multihop cluster are found in the sub-network layer. The
subnetwork layer models are used to model the topology creation
(instant infrastructure), reconfigurabili ty, adaptive channel assign-
ment (CDMA), and wireless multihop routing.

As an example of a NAM, below is a Maisie fragment for the

clusterhead election algori thm found in [10]. The basic idea of the
algori thm is that between any two nodes that can communicate, the
node with the lowest ID should become the clusterhead with the
restriction that two clusterheads can not communicate directly;
however, they can communicate via a gateway by multi -hopping
between the two clusters. 

entity clust_proc{ id,pktdrvr,neighbor,I_am_ch}
int id; 
ename pktdrvr; /*  From OSM * /
int *neighbor; 
int * I_am_ch;
{
  for (;;)
  {
    hold(RESET_TIMEOUT);

    /*  Reset neighbor and clusterhead tables * /
    for (i=1; i<=N; i++)
    {
      neighbor[i]=-1;
      I_am_ch[i]=0;
    }

    /*  Send “I’m  here” msg to all neighbors * /
    invoke pktdrvr with broadcast{ id, 0} ;

    /*  Wait to hear responses from neighbors * /
    hold(RESPONSE_TIME);

    /*  Run the Clusterhead election alg. * /
    I_am_ch[id] = 1;
    for(i=1;i<id;i++)
      if  ((I_am_ch[i]==1)& &(neighbor[i]==1))
      {   I_am_ch[id] = 0; break; }

    /*  Broadcast Clustering Packet Update * /
    /*  I_am_ch (1) = Not CH;    I_am_ch(2) = CH */
    invoke pktdrvr with 
           broadcast{ id,I_am_ch[id]+1} ;
  }
}

The clust_proc Maisie fragment fi rst initializes the neighbor sta-
tus upon a reset timeout. Then each node broadcasts a message
using the invoke statement in order to determine connectivity and
find out who their neighbors are. The hold statement is used to wait
for responses from other nodes. Starting with the lowest ID, the
algori thm iteratively determines who can be clusterheads. Finally,
the neighbors are told whether or not each node thinks it is a clus-
terhead. 



next packets once it received the ACK was around 8ms, whereas
the response time from when a packet arrived into WAMI SNOS on
the receiver side until  an ACK could be generated averaged around
37ms. Since the source had to receive the ACK and transmit the
packet, in order to estimate the input processing time of a packet for
the OSM, we found the average processing time to be 23ms
((37+8)/2). 

For every packet received we would enforce a Maisie hold of
23ms for WAMI SNOS processing and similarly we would hold for
23ms for every packet sent out through WAMISNOS.

4.1.2  SOURCEM & NAM

The modeling of the fi le transfer appli cation and TCP protocol

are done in the SOURCEM module as we saw in Section 3.3.5 and

the various parameters are shown in Table 3.

Parameters in TCP which are customizable or tunable include:
the backoff algori thm (exponential or li near), initial round trip time
(IRTT), maximum segment size (MSS), and the window size
(WINDOW). The backoff algori thm is designed to provide conges-
tion control throughout the network. The most fair algori thm used
is an exponential backoff algori thm. However, since congestion
would not occur in a point to point fi le transfer (only 1 li nk) this
backoff  algori thm was replaced wi th a li near backoff algorithm.
The round trip time is used for determining what the time-out
should be for retransmitting lost packets. This round trip time is
based upon an adaptive algorithm which is constantly measuring
and adapting to the current round trip time. A stabili ty parameter is
specified which weights the current round trip time wi th the aver-
age round trip time. Since TCP is responsible for packetizing the
data bit stream, the maximum segment size specifi es the maximum
packet (segment) size which TCP can generate. IP uses a MTU
which specifies the largest packet that can be sent over a particular
network or li nk. If the segment size is larger then the packet size
then IP does segmentation and reassembly of the packet. So, we set
the MSS to be 40 bytes less (to compensate for headers) then the
MTU. Finall y, the window size specifi es how much data can be out-
standing before an acknowledgment is required. The benefit of hav-
ing a large window is to handle the case when the latency of the
path is significant compared to the bandwidth. That is, if you can fit
more than 1 packet on the path at a time, then it is useful  to have a
window so the bit pipe can be fi lled. For our wi reless radios, the
latency is insignificant compared to the bandwidth so the window
should be set to equal the MSS.

Description Value

SOURCEM TCP Backoff 
Algori thm

Linear

SOURCEM File Size 1751560 Bytes

SOURCEM MSS 3960 Bytes

NAM MTU 4000 Bytes

NAM Header Size 71 Bytes

Table 3: SOURCEM & NAM Parameters

The data li nk layer models are used to provide mobili ty and li nk

level control such as power control [7] (utilizing various power lev-
els avail able on the radio and adapting the SIR measurement),

media access control via a TDMA based time frame[10], error con-
trol such as the spreading factor which the radio transmits on, the
CRC functions, and possibly even the Reed-Solomon forward error
correction, and lastly the logical li nk control such as providing a
hop by hop based acknowledgment scheme such as described in

[16]. These models can be refined or simpli fi ed as desired.

4.  Example Study

In this section, we provide results and comparisons from experi-
mentation and simulation of a point to point fi le transfer over a
wireless network to determine where the bottlenecks lie in the node
performance. Our example study uses the FTP application, which is
built upon TCP, to determine file transfer throughput. The TCP
parameters were customized to maximize the possible effi ciency
and surface node performance limitations. Admittedly these are
very elementary models for the general purpose simulation environ-
ment that has been described, but it allows us to ill ustrate the inter-
action of the various models in the simulation environment. 

In order to vali date the network algori thms being developed for
mobile wireless systems, a prototyping test-bench is set up to test
the instant infrastructure networking capabili ties of the Wireless
Adaptive Mobil e Information System (WAMIS) research project at

UCLA [14]. These nodes are also used as a test-bench for experi-
mentation and validation of multimedia coding algorithms and pro-
totype wireless communication hardware.

To validate the simulation models, actual measurements were
done using 2 486-based laptops hooked up with the UCLA
designed radios running WAMI SNOS to provide a point to point
wireless li nk. WAMI SNOS is buil t upon KA9Q NOS, which
includes the complete TCP/IP protocol suite. WAMISNOS pro-
vides several custom protocols and algorithms for adaptive instant
infrastructure wireless networking, customizable parameters for the
various algori thms, and performance hooks and measurement tools
for analysis. 

4.1 Simulation Models

We have developed several simple modules in this simulation
environment to model the functionali ty and performance of the var-
ious components including the network operating system (OSM),
FTP application and TCP transport protocol (SOURCEM), network
algorithm header effect and Maximum Transmission Unit (MTU)
limitations (NAM), two wi reless radio modems (RFM), and the
reli abili ty of the wireless channel (CHM).

4.1.1  OSM

In order to model the performance of the WAMI S Network Oper-
ating System (WAMI SNOS) running on the 486 laptop, experimen-
tation was done to fi nd out the average processing time for

incoming and outgoing packets. In Section 4.3.4 we wi ll  examine
how the measurements were done in more detail  and their effect.
We found that the average time for the transmitter to transmit the



The effects of customization on the performance is signifi cant.
With standard parameters used on most TCP/IP implementations,
the overhead wi th UCLA’s Radio approaches 99% (depending upon
li nk errors, back-off algorithm, etc.) Given that customization can
be achieved through better integration of the protocols and li nk
level implementation. This paper attempts to identify the remaining
bottlenecks.

4.1.3  RFM

The UCLA Direct Sequence Spread Spectrum Modem/Radio
used in experimentation and simulation operates at a fixed chip rate
of 1.032Mchips/sec. With a spreading factor of 32chips/bit, it is
able to achieve a data rate of 32.258 Kbits/sec. A packet interface
card is used to connect the radio with the computer and a packet
driver is used to connect the packet interface card with the WAMIS
Network Operating System. The various rates and customized

parameters for this experiment are shown in table 4.

Based upon the radio experiments with indoor channel models,
we found the average packet loss to be around 0.15. A packet is lost
any time the CRC checksum fails, the radio fail s to acquire the sig-
nal in time, or there is data corruption such as from interference or
background noise.

4.2 Validation

Table 5 compares the performance of the FTP application as pre-
dicted by the simulation model wi th actual measurements. We fi nd

the simulation results come close to those found in experimenta-
tion. The majority of the difference lies in the accuracy of the TCP
model. A fi xed RTO (Retransmission Timeout) was used for every
packet that was lost whereas in the experiment, TCP determines

Description Value

Raw Channel Rate 32.258 Kbits/sec

Maximum Trans. Unit 4000 Bytes

Acquisition Time 200ms

Tail Time 10ms

Media Access Control CSMA

CHM Packet Loss Rate .15

Table 4: UCLA Radio & WAMISNOS Parameters

Sim. Exper.

Data Bytes 1751560 1751560

Packets In 444 589

Packets Out 443 569

Time (ms) 823023 942710

Table 5: Simulation & Experimentation Comparison

this parameter dynamicall y. We also found that through experimen-
tation the packets were not always fi lled as was the case in the sim-
ulation. This can probably be attributed to the stream processing
functions in WAMISNOS which could be modeled in the simula-
tion environment as part of the SOURCEM.

4.3 Performance Breakdown Analysis

Table 6 presents a breakdown of the various sources of overhead
in the FTP appli cation as determined by experimental measure-
ments. We first examine the sources for each component and subse-
quently compare the experimental results wi th the simulation
results.

4.3.1  SOURCEM Efficiency

When using the UCLA Radio for the fi le transfer of the
1.7Megabyte fil e it took 942.71 seconds (as reported by the applica-
tion), with an overall  throughput of 1,858 Bytes/Sec. or 14,864 bits/
sec. This means that the effi ciency of the fi le transfer was about
46%. We use the following calculation to determine the efficiency:

We see that the largest percentage of our breakdown is the user
data (eff iciency) which is 46%. At first this seems very good that
the user is able to achieve 46% utili zation of the link bandwidth,
however the link bandwidth is only 32Kbits/sec so the user is able
to achieve 14.7Kbps. If we were able to increase the channel rate,
even at the cost of decreasing the li nk eff iciency, we could achieve
a better user throughput. This means that the largest bottleneck in
getting better performance is the limitation in the transmission rate
(raw channel rate) of the radio (32Kbits/sec.). 

4.3.2  RFM Acquisition Time

The second major bottleneck is the acquisition (25%). Each time
a packet is transmitted the radio has to go through an acquisition of
the channel which is done by adding on 200ms worth of preamble
data to the beginning of each packet. It is possible to shorten this
preamble time but the error rates and thus retransmission of the data
increase dramatically causing overall poorer performance. Besides
modifying the required time to acquire the channel, this overhead
can be reduced by decreasing the number of packets transmitted.

Description %

1. User Data Transmission (Effi ciency) 46.0

2. Acquisition Time 24.6

3. Time-outs (Packet Loss) 19.8

4. CPU Processing (Rx + Tx) 2.8

5. TCP/IP/WAMI S Headers 2.2

6. Tail  Time 1.2

7. Misc. (H/W Proc, CRC Checking, Bit Stuffi ng...) 3.4

Table 6:  Performance Breakdown

Fil eSize
ChannelRate
----------------------------------

Bits
Byte
-----------×

TotalTime----------------------------------------------------- Efficiency= (2)



The larger the packet size, the lower the number of packets, and
thus the less overhead for acquiring all  the packets. One of the
major factors enforcing the packet size is the bandwidth-delay
trade-off. By increasing the packet size, we can reduce overhead
and increase bandwidth but at the cost of delays (and having to
retransmit more data). To keep the delays and memory require-
ments for storing packets to a minimum, the packet size (MTU) is
constrained to 4K in the current UCLA Radio-WAMISNOS imple-
mentation.

 
The overhead for acquisition was calculated using the foll owing:

WAMISNOS includes the abili ty to monitor and the number of
WAMI S Packets, IP Packets, and TCP segments sent and received
at each node. The numbers of TCP segments sent and received
make up the TotalNumPkts since no segmentation was necessary in
IP (which would cause generation of more packets), and there were
not any WAMIS control algori thms running which would generate
additional packets to the radio. There were 569 data packets sent
and 589 acknowledgment packets sent. Each packet had a 200ms
header and the total time for the file transfer was 942.71 seconds or
24.6%.

Tail  time is similar to acquisition time; it is the amount of post-
amble used on each packet. This is required to ensure that the
packet is completely sent out before the carrier signal is dropped.
Experimentation shows that 10ms is an adequate tail  time. The tail
time overhead can be calculated similar to the acquisition time and
is found to be 0.012 of the total raw bandwidth.

4.3.3  SOURCEM Time-outs & CHM Packet Loss

Note that 19.8% of the throughput is lost due to time-outs. Time-
outs occur when a packet is lost (the receiver fail s to lock onto the
packet or one or more bit errors occur causing the CRC check to fail
and the packet to be discarded) and then the sender must wait for
the time-out period to occur (failure to get an acknowledgment)
before the packet is retransmitted. The variable time-out period is
call ed the RTO and varies based upon the measured round trip time
of data flowing across the path and then a weighting is done for sta-
bili zation. The base RTO varies around 2200 milli seconds. When a
packet loss does occur, the linear backoff algori thm would increase
in the time before the next packet is transmitted. The time-out starts
increasing linearly as several packet losses occur in a row. If an
exponential backoff algorithm were used, the RTO would have
grow exponentiall y at this point rather than linearly, making the
throughput dramatically worse. 

The foll owing calculation was used as an estimation of the time-
out overhead.

TotalNumPkts Tx Rx+✈ ✉
AcqTime

Pkt
-----------------------×

TotalTime
---------------------------------------------------------------------------------------------------- AcqOverHead= (3)

During this test, there were 85 packets that had to be retransmit-
ted and the average base RTO was around 2200ms so we fi nd Tim-
eoutOverHead to be 19.8%.

4.3.4  OSM Processing

Not as signifi cant as the first three overheads, CPU Processing
does make an impact on the performance using the UCLA Radio. 

The Transmitter (Tx) is responsible for taking the bit stream and
forming the packets, and putting the header information on it. We
use a hook in the WAMISNOS system which allows us to watch at
what time (in milli seconds) when an acknowledgment of a packet
comes in from the packet driver into WAMI SNOS and until  the
next packet is transmitted from WAMI SNOS to the packet driver.
We found that the average time is 8ms. If we multiply the number
of packets sent (569) by the amount of processing time (8ms) per
packets, we fi nd the transmitter CPU processing overhead to be
4.5seconds or 0.5% of the total overhead., 

The receiver (Rx) has to check and remove all  the header infor-
mation from the packet and verify that the data is correct (passing
the CRC check) and create a response (acknowledgment) to the
sender informing that the data was received correctly. It was mea-
sured using the trace facili ty built into WAMISNOS that the time
from when a packet first arrives in WAMI SNOS from the packet
driver until  the acknowledgment goes out WAMISNOS back to the
packet driver around 37ms. Since the TCP/IP protocols and the
WAMIS Network Operating System are both competing for CPU
time, along with other appli cations, protocols, etc., this number can
have a high variance, so much that it would impact the performance
of any time cri tical algori thms which needed to run at a particular
time, such as TDMA . Since 589 packets were received and each
had to be processed (37ms/pkt) the total overhead imposed by the
receiver CPU processing was 21.8sec or 2.3% of the overall  band-
width.

The total CPU Processing time is the sender’s overhead (0.5%)
plus the receiver’s overhead (2.3%) which totals 2.8%, as is found

in Table 6.

4.3.5  NAM Headers

The application, FTP, uses TCP as its reliable connection ori-
ented transport protocol. The TCP protocol packetizes the bit
stream into segments and encapsulates it wi th a TCP control header.
This TCP header is usuall y around 20 bytes. The TCP header con-
tains information such as the source and destination port (applica-
tion), the sequence and acknowledgment number, a 16 bit
checksum, and some miscellaneous flags. TCP sends the segment
down to the IP protocol which encapsulates the segment into a

NumPktsLost RTO×
TotalTime ms✈ ✉

----------------------------------------------------- TimeoutOverHead=



packet and puts on its own header of approximately 20 bytes. The
IP header contains information such as the total length of the
packet, a 16-bit checksum, an identification fi eld, and source and
destination IP addresses. From here, IP sends the packet down to
the WAMI S algorithms which puts on an additional 31 byte header
which contains information such as the source and destination hard-
ware node address, code and power control information, SIR con-
trol information, etc. The total TCP/IP/WAMI S headers are usuall y
around 71 bytes.

There were 569 data packets sent and 589 acknowledgment
packets sent and at 71 bytes per packet, the total time used up (over-
head) in transmitting header information was about 20.4 seconds
(2.2%). 

4.3.6  Miscellaneous

There are a number of other miscellaneous factors which add to
the total overhead (3.4%). It was not possible using the current
analysis and software tools to determine the exact processing time
by the software below the WAMIS Network Operating System.
This includes the time for the packet driver to activate, calculation
of a CRC check for the packet, and Carrier Sense Multiple Access.
The packet has a start of packet (STX) and end of packet (ETX)
marker so the receiver will  know the exact beginning and ending of
the packet. Bit stuffi ng is used to ensure that none of the data inside
the packet would look like one of these delimiters. Then the data
has to be sent out of the packet interface card to the modem and
from there the processing can take place to send it out to the trans-
mitter. The opposite process has to take place on the receiving end. 

This overhead was not measured but is the remaining of the over-
heads which had not been compensated for in the analysis above.

4.3.7  Performance Breakdown Validation

We found that through customization of TCP parameters, we
were able to achieve a li nk eff iciency of 46% (14.8Kbps) using

UCLA’s Radio with WAMISNOS. As shown in Table 7, the three

largest bottlenecks in this system are 1) the raw channel rate, 2)

Description

% of Raw
Channel Rate
(Experiments)

% of Raw 
Channel Rate
(Simulation)

1. Data Bandwidth 46.0 52.7

2. Acquisition Time 24.6 21.0

3. Packet Loss

    & Time-outs

19.8 17.0

4. CPU Processing 2.8 2.0

5. Protocol Headers 2.2 1.8

6. Tail  Time 1.2 1.0

8. Other 3.4 4.4

Table 7: Performance Comparison & Validation

acquisition delays, and 3) time-outs in TCP caused by bit errors and
packet losses in the li nk. The magnitude and order of the perfor-
mance bottlenecks are the same in simulation as found through
experimentation with the UCLA radio and test-bench.

In order to evaluate the performance bottlenecks using a diff erent
wi reless communication hardware and driver, we used a commer-
cial radio on our test-bench to see where the bottlenecks li e on a
higher speed wi reless radio using diff erent li nk level networking
protocols.

4.4 Extending the Example Study

In this section, we examine the performance breakdown of a
higher speed wireless radio by repeating the experiment using a
Proxim RangeLAN2 wireless radio. This experiment is able to vali-
date the performance bottlenecks which we examine under various
parameter spaces to determine the trade-off point between the vari-
ous bottlenecks. 

We repeated the experiment using the Proxim RangeLAN2/

PCMCIA Wireless LAN Adapter [18]. This radio uses Frequency
Hop Spread Spectrum, operates at a raw channel rate of 1.6 Mbps,
and uses the RangeLAN2 CSMA/CA media access protocol. By
using the packet driver for this radio, we were able to utilize this

radio as part of the test-bench in place of the UCLA radio [Figure

2]. 

The similar set of statistics were tracked for the Proxim radio as
was used in the UCLA radio performance breakdown. The break-
down analysis and comparison between the UCLA radio and

Proxim radio are shown in Table 8.

We found that the performance bottlenecks were significantly
diff erent between the UCLA and Proxim radios. The data band-
width seen by the appli cation decreased from 46% of the raw chan-
nel rate to 10.1%. Therefore, the Proxim radio, which is rated at 50
times faster (1.6Mbps) then the UCLA radio (32Kbps) in raw chan-

Description

UCLA 
Radio 

(32Kbps) 

Proxim  
Radio 

(1.6Mbps) 

1. Data Bandwidth 46.0 10.1

2. Acquisition & Tail Time 25.8 0.0

3. Packet Loss & Time-outs 19.8 0.0

4. CPU Processing 2.8 63.9

5. Protocol Headers 2.2 1.0

6. Mi scellaneous 
 (H/W Proc.,Media Access,etc.)

3.4 24.9

7. Total 100 100

Table 8: Experimental Comparison (UCLA vs. Proxim)
[Percentage of Raw Channel Rate]



nel rate, is able to achieve only a 11 times increase (161.6Kbps) in
effective (user) data bandwidth over the UCLA radio (14.7Kbps). 

In order to examine how the effective data rate changes as a func-
tion of the raw channel rate, we are able to utilize the simulation
models and simulation environment, described earl ier. The results

are shown in Graph 1. We see a very close correlation between the

simulation results shown with those found through experimentation
with the UCLA and Proxim radios.

As the raw channel rate increases, we fi nd that the data band-
width bottleneck decreases, as a percentage of the raw channel rate.

We see in Table 8 that there is a signifi cant increase in CPU Pro-
cessing overhead (from 2.8% to 63.9%) even though the exact same
laptops were used due to the increased raw channel rate (32Kbps
vs. 1600Kbps). Now the CPU Processing became the largest bottle-
neck for the Proxim radio. 

In order to evaluate the CPU Overhead versus Data Bandwidth
for a larger parameter space of various raw channel rates, we used

the simulation models again to obtain Graph 2.

We see how the CPU Overhead becomes a dominant factor of the
raw channel rate around 700Kbps and thus the decline in the data
bandwidth effi ciency when the CPU processing time is fi xed at
around 23ms per packet. In this graph, we see that the CPU Over-
head attributes to approximately 30% of the loss in bandwidth.

However, in Table 8 we found through experimentation that the
CPU Processing overhead for the 1,600Kbps Proxim was 63.9% of
the raw channel rate. The difference between simulation and exper-
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imentation is that in the simulation models, we assume TCP sees a
packet loss rate of 15%, and in our experiments, TCP saw no packet
loss. We attribute this to a li nk level acknowledgment scheme as
part of the link level protocol used inside the Proxim RangeLAN2. 

As technology advances the raw channel rate in which these
wireless radios are able to operate, so will  advance the processing
speed of the laptops. To see the effect of the CPU Overhead and
Data Bandwidth as a function of CPU Process delays, we used
modified the simulation parameters in the models described earli er
to obtain the performance bottlenecks at various CPU processing

delays. The results are shown in Graph 3. Here we see trade-off

between the CPU Overhead and Data Bandwidth efficiency of the
channel as CPU processing delays (per packet) decrease and the
channel rate remains fi xed at 1,000 Kbps. When the CPU process-
ing delays fall  below 17ms per packet, the channel rate starts
becoming the larger bottleneck.

5.  Related Work

There are several diff erent network simulators currently on the
market. These simulators have primaril y been used for design and
performance evaluation of networking algori thms. The problem
with these simulators is the lack of full flexibili ty for customization
such as modeli ng the operating system kernel or system interfacing
found in the implemented system.

Many existing commercial network evaluation tools suffer from
the foll owing limitations which are addressed in this simulation &
prototyping environment:

• Most tools are not tail ored for wireless protocols and 
have awkward and inadequate interfaces for specifying 
wireless and mobil ity related parameters. 

• Models generated by existing tools are often of little use 
in generating working implementations of the protocols. 
For instance, the finite state machines used to specify 
the protocols in OPNET must be manuall y re-coded to 
design an operational prototype. This leads to unneces-
sary duplication of resources and is also error prone.

• As yet, no common reference model exists for most 
mobile and wireless parameters such as performance 
measurements.

• Existing prototyping tools do not provide a way to 
incorporate operational protocols into the modeli ng 
environment. An important component of the simulation 
environment is backporting of existing software and 
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protocols into the simulation environment for scaling 
studies and vali dation as well as for testing inter-opera-
tion with novel protocols. 

• Existing simulation tools are extremely slow. Models 
with even a relatively small  number of mobile devices 
(e.g., personal communication systems) can take hours 
of execution time on contemporary workstations. Scal-
abili ty studies involving hundreds, and perhaps thou-
sands of these devices, are practicall y impossible using 
these tools.

In addition to the related work with commercial products, vari-
ous research projects at other universities are working on specifi c
simulation and implementation environments for mobile, wi reless,
and networking protocols. A simulation environment was devel-

oped specially for the x-kernel [11] which successfully analyzes the
performance of the new protocol based upon various simulation
model parameters. In order to support implementation, the
approach used in the x-kernel and Scout projects at the University
of Arizona is to develop an operating system which can support the

implementation of networking protocols [1]. Of the related work,
few address the development of a simulation environment to model
the various components used in mobil e wireless network systems,
and none of them support parallel simulation and a direct path
between implementation and simulation for vali dation and experi-
mentation.

6.  Conclusion

This paper described a software architecture for a simulation
environment for mobil e wireless network systems. The environ-
ment provides clearly deli neated modules to model each of the pri-
mary components of the system: network operating system, traffi c
models, protocol models of the network, data, and physical link lev-
els, radio models, and mobili ty patterns. Each of these models can
be as simpli stic or detail ed as desired. The environment has been
used to perform a number of studies: this paper described only one
simple study that used the NOS, radio, and channel models to eval-
uate a point-to-point fi le transfer protocol over a wireless network.
The test-bench not only provides a path for implementation from
the simulation environment, but also validates the simulation
results. The test-bench and simulation environment are fl exible
enough to be used for various aspects of simulating mobil e wireless
network system components and their integration. The time to
achieve analysis results have been significant reduced by being able
to write models which transparently run in a parallel simulation lan-
guage and supports refinement of the models as desired.

The experiments reported in this study used only the sequential
Maisie implementations. Parallel Maisie implementations have
yielded significant performance improvements for a number of

example studies[4]. We intend to explore the viabili ty of the parallel
implementation in improving the performance of simulation models
for wi reless networks such as those described in this paper. We are
also extending this simulation environment and test-bench to sup-

port nomadic computing issues [15] and various transparent
nomadic networking protocols. 
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