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Abstract

If we have u large population of users sharing a common broadcast channel using the Siotted Aloha access scheme.
we know that the maximum achievable throughput is only 36% (1/e) of the channel capacity, independent of the
exact number of users of the channel. If we allow the packet radio units 1o restrict their range so that they transmit
at a power which just allows their communication partner to receive the message, we find that we can achieve a much
higher throughput (depending on the traffic matrix) by spaval reuse of the channel. In this paper we consider the
extreme case of packet radios wishing only to communicate with their ‘nearest neighbor’ and find both analyticaily
and by simulation that we can achieve a throughput which is a linear function of the number of users in the system.
This behavior is attributabie to a reduction in interference due to spatial separation and suggests that. by forcing the
packet radio units to use reduced power, we may be able to achieve similar throughputs for less restricted tratfic

matrices.
1. INTRODUCTION

One of the major problems in effective utilization of computer resources
is the distribution of those resources to the user. This problem has been
greatly alieviated by the advent of communication networks but local
distribution still remains a problem. The concept of broadcast packet
radio for local access was first utilized in the ALOHA system (ABRA 701
and more recently, the Advanced Research Projects Agency of the
Department of Defense has undertaken a project to investigate the use of
more general broadcast packet radio sysiems [KAHN 77). A packet radio
network consists of many packet radio units (PRUs)** sharing a common
radio channel such that when one umit transmits, many other units will
hear the packet, even though it is addressed to only one of them. This
feature. inherent in broadcast systems. in conjunction with the fact that
we have no control over access (0 the channel. results in destructive
interference when several packets are received simuitaneously.

Many studies have been made on the capacity (maximum achievable
throughput) of centralized single hop communication networks using
broadcast radio as the communication medium. In (LAM 74] we find an
extensive analysis for the tully coanected one hop slotted ALOHA access
scheme and in {TOBA 74. KLEI 75b] we find similar results for Carrier
Sense Multiple Access (CSMA).

A class of problems. which has received littke attention in the literature, is
that of peint to point {i.e.. non-centralized) networks. In this paper we
will be concerned with point to point communication. The simplest
approach that allows realization of an arbitrary traffic matrix is to let alt
nodes be within range of each other. The capacity under these
circumstances will be the same as for the centralized network, 1/e. If.
however, we restrict the range of the packet radio units so that they are
just able to reach their destination (i.e.. a one-hop transmission), we find

a reduction in the amount of interference generated and are. thus, able 10
achieve higher throughputs.

The interference pattern and hence the network performance will
therefore depend on the traffic requirements. [f the traffic requirement is
for nodes at opposite extremes of the network to communicate, we will
have the fully connected network that has a capacity of 1/e. If all of the
wraffic is local, however, we are able to pertorm at much higher
throughput levels by spatial reuse of the channel. [n this paper we are
concerned with determining the capacity for this local tratfic situation and
attlempt o find the ‘best’ traffic matrix (i.e.. that which will allow the
maximum capacity). The problem of finding the "best” matrix is hard. so
instead we find some simple upper and lower bounds on the capacity and
then look at the performance tor some specific local matrices which have
excellent performance. These traffic matrices allow us to achieve a
throughput which is a linear functuon of the number ol nodes in the
network (a significant improvement over the fixed !/e of the fuily
connected network ''). The enormous capacity improvement that this
allows. suggests that restriction of transmission range may be beneficial in
true ‘connected) newworks which are able (o support an arbwrary traffic
requirement.

Eisewhere. we have studied two different system designs for realization of
an arbitrary traffic matrix where this range restriction is indeed beneficiai.
In [KLEI 78] we investigated multi-hop communication and were able to
construct networks having a capacity that is proporuonal 10 the square
root of the number of nodes in the network. We also found that an
optimum transmission radius exists which maximizes the sysiem capacity.

* This research was supported by the Advanced Research Projects Agency of the Department of Detense under

contract MDA 903-77-C-0272.

= Ail components of the packet radio network (terminals. computers or repeaters) use a common device for channel

access. This device is called the packet radio unit.



In [SILV 9] we restrict our attention to single-hop communication and
are ible w0 ichieve a capacity which s proportional to the fogarithm on
the numbper »t nodges «n ihe network.

The networks that we study in this paper are random in nature. that is to
say. the nodes are uniformly distributed throughout the area under
consideration {which may be a circular disc for two dimensional networks
or a line segment in one dimension). Having generated the network in
this fashion (which can be thought of as either representing an arbitrary
network or a4 snapshot of a mobile one). we proceed to impose a matrix
of traffic requirements. and then determine what transmission radii are
necessary to support this communication. Knowing the transmission radii
we can determine the interference pattern and compute the throughput
for heavy traffic. This heavy traffic throughput is considered to be the
capacity of the network.

In the following section we give an example of how this capacity is
computed for a simple example.

2. COMPUTATION OF CAPACITY

Figure | shows a random network of four nodes. the circles drawn
around each node representing the area covered by a transmission of that

N
)

Figure I A Simple Four Node Network

The transmission radii shown are determined by the tratfic matrix, which
In this example requires that nodes | and 2 are a communicating pair and
that 3 and 4 are the other pair.

In order 1o find the capacity we consider the heavy traffic situation, that
is. when all nodes are always busy and have something to transmit. The
probability of a successtul reception, s,, at node  can then be computed.

5. = Pr{partner of / transmits) Pr{; does not transmit]
Pr{no one else whom : hears, transmits} (0

If p denotes the probability that node : transmits in any slot. then the
probability of a successtul reception at node 1 is:

51 = pall=p ) (1=p3) )
For heavy traffic in the Slotted ALOHA mode, the capacity of node /, v..

is equal to the probability of a successful reception, s,.

If we assign a transmission probability of 4 to each node the throughputs
are:

1
8
(14)3 1
14)2
y=- ‘“/A:, - ‘; (3)
tis)} 16
1
3

This gives a total throughput. v (=Y y ). of:

y == 4)

3. DEFINITIONS

In the following discussion we refer to several variables defined as
follows:

The Density A represents the average number of points (nodes) per unit
area.

The Number of Nodes in the network will be .

The Traffic Mairix  defines the amount of flow between nodes in the
network. In this paper it will be used to identify the traffic pattern and is
assumed to be normalized in some fashion. As each node will only be
communicating with one other node in the system, each row (and
column) of this matrix will have exactly one non-zero element.

;o= 1 if i talks j
] ) (5)
0 otherwise

For the particular arrangement shown in the example above (Fig 1) the.
traffic matrix is:

2498

0

r=1000 1 6)
0010

The Adjacency Matrix A defines the hearing graph, i.e.. which nodes can
hear which others. This matrix is not necessarily symmetric as the
underlying graph is directed since different nodes may be using different
transmission radii.

1 if ; hears /

a, = . t7)
0 otherwise

For the earlier example (Fig. 1), the adjacency matrix is:
111 8

110
A=li11 1
0111
The Hearing Distribution H, defines the probability that a node is in range
of 1 other nodes. We call this the excess number of nodes heard, as we

count neither the node itself nor its partner. H, is the probability that A
has /+2 ones in any column.

H, = Prla node hears : excess nodes} (9)

The Hitting Disiribution h. represents the probability that i nodes hear a
given node’s transmission. [t corresponds to the probability of A having
i+2 ones in any row.

#, = Pr{an excess of : nodes hear when a node transmits| (310

The Transmission Probability vector P is an extremely important system
parameter, which defines the probability with which a node will transmut
in any slot.

p, = Pr{node / transmits in any slot} (n

In this paper we will use two different policies for the retransmission
probability. The first corresponds to the optimum value for a pair ot
non-interfering nodes and uses a probability of 4 for all nodes. The
other policy is to attempt to set the local traffic load to unity and thus
reduce overloading in the local channel. In [LAM 74, ABRA 70, YEMI



“3] we fnd that i 1 node nits an 2xcess of 4 nodes tas . the definion
At ine nuung and hearning disirtbutions). then the optimum transmission

srananin s

The Success Probabiin: vector s represents the probability of any node
receiving 1 packet successtully (n any siot.

s. = Pr{node / successfully receives a packet} (12)

The Throughput y. For heavy traffic the throughput is identical to the
success probability (y.=s). The system capacity, y, is the sum of the
nodal throughputs.

y=2Xv. (13)

We use y* lo represent the throughput for a j-dimensional model.
4. GENERAL MODEL

With the above definitions we can write the success probability in terms
of the other variables. Suppose that / and ; are a pair of communicating
nodes, i.e.. r,=1.

s. = Pr{/ transmits} Pr{; does not transmit}
Pr{none of :'s neighbors transmits)

=p(1=p)i 14
where
{ = Pr{no interference} (15

Since the networks that we consider are homogeneous, the throughput
for all nodes is identically distributed: we can therefore drop the
subscripts corresponding to the particular node under investigation. As
noted before. the retransmission probability is only dependent on the
number of nodes hit by a transmission. [f we make the further
assumption that both nodes of a partnership hit the same number of
nodes* we obtain the foilowing expression for the throughput:

1

e (16)

y—lz.h.

w-)

1

1
k=2

Assumption: We assume that the interference heard by any node is
independent of the number of nodes that he hits. With this assumption
we can proceed with the computation of /.

=2

=3 H =g an

v

where ¢ is the expected transmission probability of a node that you hear.
Defining the z-transform of the hearing distribution:
H(:) = 3T H (18)
-
we can rewrite the expression for / in terms of this transform H (z):
[ = H{(l-q) 19)

The expected transmission probabulity is given by:

n=2 1
-3 s (2
9= T 0)

A=)

where 8, are the "adjusted hit probabilities’, i.e., the probability that a
node you hear hits k excess nodes when he transmits. We cannot use the
hit probabilities as defined above, since a node is much more likely to
hear a node that hits many other nodes than one that hits only a few.

* As both nodes are transmitting at the same range. the expected number
hit by a transmission wiil be the same.

9 k=0 N
A=)k I 2

where ¢ 15 4 normalization constant such that Z»« =|

We have thus reduced the problem of finding the throughput to that of
determining the sets of probabilities 4. and H..

Below we try to find the best traffic matrix; first, however, we look at
some bounds.

5. SIMPLE BOUNDS ON PERFORMANCE

In this section we give simpie upper and lower bounds on the
performance for the best possible traffic matrix (BTM).

5.1 Upper Bound

if there were no interference between pairs of nodes. we would be able 1o
achieve a performance equal to that obtainable by n/2 independent pairs.
One independent pair is able to support a throughput of '» (which is
achieved for a transmission probability of 2 [ABRA 70]. Thus,

n
Yaru < ry (22)

5.2 Lower Bound

As a lower bound we consider how many pairs (clean pairs) we can
support without any of them causing interference to any other pairs.
Consider a pair of nodes in the network. P and Q. If these are 10
communicate without causing any interference, Q must be P’s nearest
neighbor and P must also be Q’s nearest neighbor.

5.2.1 One Dimension
In Figure 2 we show two points in a one-dimensional random network.

There are n nodes randomly located in the unit line. For simplicity we
approximate this by a Poisson process of density A (=1/u).

Figure 2 No Interference in One Dimension
Suppose Q is P's nearest neighbor. The distribution of x (PQ) is given by
(KEND 63}:
S(x)dx = e~ Mdx (23)

For no interference we require that there be no point closer to Q than P.
That is. there is to be no point on the dashed line. The length of this line
is clearly equal to x. and the probability of finding no point there, r. is:

e 24

So the probability that a point is a member of a clean pair, g, is:

g - ‘[Zl\e"“'e'“dx

_fz,“,-:.-dx - (25)
6}

i

We see. then. that we can find a traffic matrix which can support .67n/2
clean pairs. which will aliow a throughput of .671/4. Thus.
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5.2.2 Two Dimensions

We now consider the two dimensional analog.

Figure 3 No Interference in Two Dimensions

Let Q be P's nearest neighbor, we assume that P and‘Q are randomily
located in the unit circle by a Poisson process of parameter A. (This
model is not exact. as in fact we place precisely # points in a unit circle
but for large 7 it is a good approximation.) The distribution, s {x), of PQ
is given by [KEND 63, ROAC 68]:

Fixtdc = 2mhxe " dx Qan

For no interterence we require that there be no point closer to Q than P.
That is. there is to be no point in the shaded area. . encircling Q (there
is no point in the circle around P since Q is the nearest neighbor). This
area can be round to be:

RNPIRT
= 1913x* (28)

The probability of finding no one in this area is ¢™*". So the probability
that a point is 4 member of a clean pair, g, is:

s
J - J-?./\w.\'c"“e“"dx

-—T
7+1.913

= }.622 (29)
This result can also be found in [DEWI 77].

Thus we can find a traffic matrix allowing a throughput of .62n/4 and this
gives us the tollowing bounds:

.62n : n
. € Yoy € n (30)

[n figure 4 we show simulation results for the number of clean pairs in a
random network (for one- and two-dimensions) and also plot the vaiues
predicted by the model. As expected, the agreement between the two is
excellent.

6. CASE STUDIES

We have found bounds for the performance of the ‘best traffic matrix’,
but determination of the optimal is a difficult (NP-complete) problem.
We choose. therefore, to look at some specific connection strategies
allowing us to achieve high throughputs. For some of these cases we can
proceed with the analysis outlined earlier, but in all cases we give

1-d Modet
o i-d Simulaunon 2.4 Moded
(4
€ 2-d Simuianon
40 <
30 4
ng (]
20
10 4
v A T v L] \J T T
20 4 &0 0 1% 120 140 160

Figure 4 Clean Pairs - 1-d and 2-d
simulation results.
6.1 Nearest Unpaired Neighbor (NUN) in Two Dimensions
In this section we consider random two-dimensional networks and give a
low interference connection strategy, the behavior of which falls within

the bounds given in section 5.

The connection policy for the nearest unpaired neighbor scheme is as
follows:

1) Generate the random network (even number of nodes): mark all
nodes as unpaired.

) Find the two closest unpaired nodes and connect them: mark
them as paired.

3) If all nodes are paired. we have finished; otherwise, return to
step 2.

The traffic pattern generated by this algorithm is satisfied by giving each
node sufficient power to exactly reach his destination. We show a sample
network generated in this fashion in figure 5 (both dashed and solid lines
represent pairing).

The next step is to assign transmission policies as outlined in section 3.
The weighted scheme assigns each node a transmission probability of

—_k-lf-Z . where & is the excess number of nodes hit by a transmission. We

show simulation resuits for this scheme in figure 6. which also shows the
bounds given by equation (30). We have also included the curves for the
fully connected ALOHA system [ABRA 70] and for a random traffic
matrix satisfied by exact transmission radii [SILV 79]. We see that the
performance of the weighted system appears 10 be linear and exceeds the
lower bound. Although we do not analyze this scheme here. its
performance is almost idenucal to that of one-dimensional adjoiming.
which is analysed in section 6.3.

The second approach that we use in trying to find high throughput is
expurgation. Each node is assigned a transmission probability of 4 and
then those pairs causing excessive interference (starting with the longest
link in the network, as this is the one most probably causing the greatest
inteference) are not allowed to transmit (expurgated). [f this process is
continued until no further improvement is found. we have the optimatly
expurgated scheme. the performance of which is aiso shown in figure 6.
We notice that the behavior is very similar to the weighted transmission
scheme. In figure 5 the dashed lines indicate those pairs which would be
expurgated.
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Figure 5 A 10 Node Random Network
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Figure 6 NUN in Two Dimensions

[n figure 7 we show the effect of expurgation on the throughput for
various network sizes. In all cases the throughput increases until about
16% of the nodes are no longer communicating. As we delete additional
pairs of nodes, the throughput decreases linearly to zero since the pairs
being expurgated are. in fact, not causing interference.

6.2 Nearest Unpaired Neighbor (NUN) in One Dimension

This is the one-dimensional equivaient of the wwo-dimensional scheme
outlined above. In the following section we consider a simpler version of
this. in which every node is connected (adjoined) to his left (or right)
neighbor. We find that the performance of NUN and the adjoining
scheme are almost identical and therefore do not show the results
explicitly for this scheme (NUN), but rather investigate the simpler
(Adjoining) scheme in greater detail.

6.3 Adjoining in One Dimension (ADJD)

For this scheme we randomly locate » points on the unit line and then
connect adjacent pairs siarting from one end.

My

* dropped

Figure 7 Expurgation for 2-D NUN
6.3.1 Determination of the Hitting Distribution h

We know the distribution of the distance to the neighbor on your left (or
right) and we must determine how many points are expected to fall in
this distance on the other side of the connection. this being the number
of points that will hear you. The distribution ot the neighbor distance, x,
1S:

Six)dx = xe Mdx (%2})

The points that you hit are precisely those that fail in a distance x on
vour right (left). (Notice that this is not the same as the distribution for
vour nearest neighbor as given in equation (27).) The number of points
falling in this distance on the other side is Poisson distributed. thus:

. . ( ‘
Pr{; in a distance x} = ¢~ '\—T) (32)
So.
- T (AX) vy = - Iy PR
h, ‘!.—'! e~ xe Mdx J:,\ xeT\dx
- (14)" (33)
1 points
A
P P 0
1 ] ]
R,l T 1

Figure 8 Hitting Distribution for 1-d Adjoining

We can derive this distribution in an alternate manner without having to
rely on the exponential or Poisson distributions as follows. Suppose that
node P (whose partner is Q) hits / excess nodes. Let R be the first point
on the left that cannot hear P, for this to happen. P must be to the right
of the midpoint of QR, the probability of this event is 2. [f x is the
distance from P to Q then consider a point P’ at a distance x to the left of
P. Now ail the / excess points must fail to the left of the midpoint of QP
(i.e. 10 the left of P). The probability of this event is (2). Thus the
probability that P hits / points is:

rd



S.omming (hese 10 cblain [ we gel:

T - (36)
> e 37
> T mn
= | (for large n ) (38)

S-am this we may determine the expected transmission probability of
.nierraring nodes. ¢

-2
'

-c|T - 42217 (‘/z)’]

-

- [l -0t + 4

log(h) + 4 + i -I—U/z)‘l ]

-l

= 3~ 4log(2) (for large n ) (39)
In order to proceed we must find the hearing distribution.

6.3.2 Determination of the Hearing Distribution H

k—1 points
Lo A Al
1 L Q |
pl Q )

Figure 9 Hearing Distribution

Suppose that between P and Q' there are k—1 points. In order for P to
hear Q' (the partner of Q) all & points (the k—1 intervening points and Q'
iself) must fail to the left of midpoint of PQ. The probability of this is
zasily determined to be:

Pr{P hears Q} = (*4)* (40)

We will say that Q' is at distance & from P if there are k~1 intervening
points. We find that the points who interfere with P from the right are at
distances 1.3.5.7. etc.

We may use an identical argument for points on the left of P and we find
that these points are at distances 2,4,6 etc. Let us therefore call the event
of being hit by a person of distance k away £,. Then:

Pr{E:) = (A)* . (41)

If P hears ; people this means that exactly j of the set of events {E.} have
occurred. We can therefore write the expressions for H.. Let us first
{ook at the probability that P does not hear any interference (this is Ho).

o = 2- D -—aars oniy s pariner:

=Pr:none of E. occur}
- 1:1 [1 - 15/:)‘] (42)
A}

Unfortunately it appears that this product does not have a closed form. [t
is in fact related to the inverse of the partition function. We use the
following identity of Euler to evaluate this expression, which converges
extremely rapidly and also gives us a bound on the error (as it is an
alternating monotonically decreasing series).

- - EERSTY
[Mu-x=% =rx : (43)
k=i -0
We find:
Hy= 0.289 (for large networks) (44)

To find the probability that P hears one additional point we must find the
probability that exactly one of the E. occurs, and generalizing, if P hears ;
additional points then exactly j of the set {£.} must occur.
a=1 Hr) .
- —_— 43)
Hi= I Tooae

=i
So, in general:

n=1 =1 =1 HO
H, = -
-z X 2.- U= =) - - [1=(4)"]

kl-l A= ,y*l

(46)

These have been evaluated by computer and the values are shown in
Table 1 (for a 100 node network).

H A
number /
j analytical | simulation | analytical | simulation
T I
0 0.289 | 0302 0.500 0.504
1 0464 | 0446 0.250 0.250
2 0209 | 0212 0.125 0.117
3 0.036 | 0.037 0.063 0.068
4 0003 | 0.002 0.031 0030 |
5 0 Lo 0.016 0014 |
6 0 0 0.008 0.009 !
7 0 | 0 0.004 0.004

Table | Hearing and Hitting Distributions for 1-d ADJ
From these we can evaluate /. the expected interference.

I =3 Hil=q)
-
= 0.78924 (47

This gives the throughput for node j, v

-2
=2

1
y/—lgh.-l—:i

1

l-__

i+2

-2/ )': L py - 2 —Il- (‘/:)‘1
=2 -

-2



A logi»]*: =
=2/ log'l)oJ-‘——-—

3 3 (for large n)
= 1756 (48)
Thus the total network throughput. y, is given by:
vy = .176n (for large n) 49)
L MODFL

10

Random
ALOUA

Figure 10 Throughput for ADJ in One Dimension

Figure 10 shows the throughput predicted by this model and also the
bounds found in equation (26). We aiso show simulation results for both
the weighted and expurgation schemes. We see very good agreement
between anaiytical and simulation results. For reference purposes we plot
the fully connected ALOHA capacity [ABRA 70] and the capacity (or a
random traffic mairix satistied by exact transmission radii. a model for
which can be found in {SILV 79].

6.4 An Overview

All of the schemes of the previous sections have very similar
performance: we were able 10 obtain an analytic expression for the one-
dimensional case. All of them exhibit linear behavior in excess ot the
lower bound with slopes of approximately 1/2e. We feel that these
schemes are in fact very close to the best possible traffic matrix. although
we do not have any concrete justification for this statement at this time.

7. CONCLUSIONS

In this paper we have iooked at the capacity of Packet Radio Networks for
local traffic. In particular we were trying to determine what traffic pattern
would allow us to achieve the highest throughput. We were to abie to
find some simpte bounds on the performance of the the ‘best’ traffic
matrix. We found that the total throughput y for the optimal traffic
matrix is bounded in one dimension by .67n/4 € y €< a/4 and in two-
dimensions by .627/4 < y <n/4. We found that locai traffic seemed to
give low interference and so studied some specific configurations in more
detail. For these local configurations we were able to achieve a capacity
which is a linear function of the number of nodes in the newwork.
exceeding the lower bound. We analyzed the one-dimensional case,
showing y = .7n/4. In all cases our simulation results supported our
analytic findings.
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