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On the  Capacity  of  Single-Hop gkotted  ALOHA Networks 
for  Various  Traffic  Matrices  and 

Absrrucr-In this paper we formulate  a  general model of the  capac- 
ity of single-hop  slotted ALOHA networks. We find that the  capacity 
can be  expressed as a  function  of  the  nodal  degree (i.e.,  number of 
nodes within  range of a  transmitter). We than evaluate  this  model  for 
various traffk matrices. In order  to  satisfy the requirements  of  a 
given traffic  matrix,  the  transmission  power  is  selected  accordingly 
and  this determines  the  degree of the  nodes and, hence,  the network 
performance.  Finally we compare  our  results  to  simulation  studies. 

T 
I. INTRODUCTION 

HE first use of a random access protocol  for computer 
communication was the ALOHA system at  the University 

of Hawaii, which was  used to connect the various campuses 
of the University located on different islands via radio packet 
switching [l] , [8] . In the ALOHA protocol, any node wishing 
to transmit over the (broadcast) channel does so with no 
regard for  the  other users. In light traffic the transmission will 
succeed with high probability, resulting in a low delay  (com- 
pared to TDMA, for example). As the traffic load increases, 
the probability of a node deciding to transmit during the 
transmission of another node will also increase. This will 
result in a “collision” causing the  destruction of one  or  both 
of  the messages.  The nodes involved in the collision are alerted 
to this fact by  the subsequent lack of positive acknowledg- 
ment. They then retransmit the message after some (random) 
delay (to avoid continued collisions). 

The early work in this area considered centralized fully 
connected networks (i.e., all nodes could hear one  another and 
all traffic was directed to a particular central node such as the 
main campus in the ALOHA system). Extensive  analysis  of 
“pure ALOHA” for fully connected networks can be found in 
[l] , [lo] , where it is determined that  the maximum that  the 
channel can  be utilized is 18 percent (1/2e)  of  the channel 
bandwidth. A simple modification to the ALOHA scheme . 

slotted ALOHA, proposed in [12] -forces transmissions to 
commence at  the beginning of “slots” (time divisions of 
length equal to a packet transmission time). In [ l o ] ,  [ 121, we 
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find analysis of this scheme  showing that  the capacity is 
doubled (over unslotted ALOHA), to  36 percent (l/e). 

More recently,  the concept of  a packet radio network has 
been developed [5], [6] , which allowed multihop communica- 
tion  but initially required all traffic to pass through central 
nodes called stations. Modifications to the original  design  also 
allow direct terminal-to-terminal communication without 
requiring the message to pass through the  station. 

In this paper we consider such direct terminal-to-terminal 
traffic but restrict our models to the case  where the destina- 
tion can be reached without  the use of repeaters (single-hop). 
For some traffic patterns it is not necessary to use a fully 
connected  topology, however. In fact, we shall see that  it is 
beneficial to use reduced transmission power and reduce the 
interference. 

We first develop a general model for  the performance of 
one-hop  slotted ALOHA broadcast networks that satisfy cer- 
tain homogeneity assumptions and then evaluate the model 
for various combinations of traffic  patterns and transmission 
strategies. 

11. NETWORK  MODEL 
The network environment that we consider is a set  of 

randomly located nodes which are  able to communicate in 
one  hop. Such a  network may be thought  of as a representa- 
tive of all possible configurations or as a random snapshot of 
a mobile network. The traffic model is of the (instantaneous) 
communication requirement between some active  subset of 
the  total number of nodes in the  network (nonactive nodes are 
ignored). 

We consider a set of n (active) nodes located randomly 
according to a uniform distribution over a unit hypersphere in 
a space of some dimensionality. We consider that  the nodes 
communicate in (symmetrical) pairs. If we let T = rij  repre- 
sent the traffic rate from node i to node j ,  then tii = 0 * tii = 
0, and T has exactly one nonzero element in each row and 
column. (Note that we do  not require that rij = tji.) 

For a particular network  and traffic matrix, we satisfy the 
communication requirement by  a suitable choice of transmis- 
sion power. There are two approaches to satisfying this ran- 
dom communication pairing: 1) give every node sufficient 
power to be able to reach every other node in the network; or 
2) give each node sufficient power to  just reach his communi- 
cation  partner. 

Once the  network is established, as above, we have one 
additional parameter to specify-the probability that  a node 
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will transmit in any slot. (This corresponds to the offered ference factor I .  (In fact,  1 --I is the interference encountered 
channel traffic randomized so that  slotted ALOHA  will oper-  by  a  node,  and perhaps we should call I the noninterference 
ate correctly and resolve previous conflicts due to simultane- factor!) We can think of this factor as background interfer- 
ous transmissions.) In order to compute  the  throughput, we ence. If we  assume that  the interference encountered at  any 
use the “heavy traffic model,” which corresponds to assuming node is independent of the number of nodes that  he  hits,  then 
that all (active) nodes are always busy, but which transmit in-  the expected throughput for any node in the network, ynode,  
dependently in any given slot depending on this transmission is  given by 
probability. We denote  the transmission probability for node 
i as p i .  

A .  Nodal Throughput 

n 

Ynode = I  x hkYk 
k = 2  

Consider an arbitrary node (say node i) in the  network. 
The probability that this node correctly transmits a packet to where hk is the probability that  a node hits  k nodes when he 
his partner (say node j )  in any slot is given by transmits (note  that he always hits himself and his partner). 

si = Pr {i transmits} Pr { j does not transmit} 111. THE INTERFERENCE FACTOR 

Pr {none of j ’ s  neighbors transmits} 

where Nj  is the set of nodes that j can hear (excluding his 
partner i). The assumption here is that reception is a discrete 
process, i.e.,  a  node either hears a transmission or does not. 
Thus, another transmission either causes interference or not, 
depending on whether he is more distant  than  the threshold 
of  reception. In a real network  this reception process  is not 
discrete but depends on relative  power  levels, noise, multi- 
path,  etc. 

si is the  rate  at which node i succeeds in sending traffic to 
his communication partner. Since  we  have a single-hop net- 
work, this corresponds to the  throughput  for this node, yi. 
If the  network were multihop we would have to divide this 
success rate by the path length in order to obtain end-to-end 
throughput. Thus, the  total  network  throughput y is  given by 

n n 
y = yi = si .  

Since the networks we consider the homogeneous, the through- 
put  for all nodes is identically distributed;  therefore, we drop 
the subscripts corresponding to the particular node under 
investigation, and rather consider the performance of a  node 
that hits (i.e., interferes with or is heard by)  a particular num- 
ber of  other nodes when he transmits. We modify our  notation 
to let P k  be  the transmission probability of a node that  hits  k 
nodes when he transmits (including himself and his partner) 
and 7 k  to represent the  throughput for a node which hits 
k nodes. Making the assumption that  both nodes of  a  partner- 
ship hit  the same number of nodes (this is not valid, but  our 
simulations show it to be a reasonable simplifying assump- 
tion), or  at least that  they use the same transmission probabil- 
ity, we obtain  the following expression for  the  throughput: 

where we have collected the interference terms from nodes 
other  than  the  node itself and his partner  into  the  inter- 

I is the  product of terms corresponding to the interference 
generated by  the nodes that are heard by the destination. We 
can group these terms depending on  the number of nodes that 
the source of  the interference hits when he transmits. We de- 
fine Ik to be the  total interference contribution of nodes that 
hit  k nodes when they  transmit. Let  us  call a  node that hits  k 
others when he transmits a  “k-hitter.” Then 

n -  2 
Ik = Pr  {a node hears j k-hitters} (1 -pk)’. (5 1 

j =  0 

The total interference will then be the product of these factors. 

We define Hik to be the probability that  an  arbitrary node 
hears j k-hitters. We can evaluate this as follows: 

n -  2 

Hik = x Pr {Total of 1 k-hitters} Pr {hear j of 1) 
Z=j 

. (;)( ” ) j  ( -- k - 2)” 

n - 2  n - 2  

We thus have 
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We can switch the  order  of summation to get 

Thus, the interference factorI is  given by 

For large n ,  we  can use the exponential approximation to find 
n 

The nodal throughput  for  an n-node network is  given by 

We now use this model to investigate the  throughput  prop- 
erties of several configurations. 

IV. COMPLETELY  CONNECTED  TOPOLOGIES 
One approach to satisfying an arbitrary random traffic 

matrix is to give every node sufficient transmission power so 
that all the nodes in the  network hear when any  one transmits. 
This corresponds to the model of [ 13 , [2] , [12] and  the  total 
network  throughput will therefore approach l / e .  We proceed 
to show that  our approach is consistent with this result. 

Since the environment for each node is identical, we assume 
pi = p .  The number of nodes that can interfere with a given 
transmission is n - 1 ,  i.e., h, = 1 .  The throughput  for each 

node is 

= p(l - p y -  ( 1  3) 

which is the well-known slotted ALOHA result and reduces to 
l / n e  forp  = l/n and large n .  

V. ADJUSTABLE  TRANSMITTER POWER 

Another approach for arbitrary traffic matrices is to limit 
the power of each transmitter so that it exactly reaches its 
destination (again  assuming that reception is a two-state proc- 
ess, either you can or  cannot hear a transmission) [14]. In 
Fig. 1 we show a randomly generated two-dimensional net- 
work of  ten nodes connected in this manner; the lines joining 
pairs of nodes represent the traffic matrix  and,  hence,  the 
transmission radii (e.g., nodes 3 and 9 are a communicating 
Pair). 

A. Analytical Model 

We now proceed to find the  hitting distribution hk .  Con- 
sider an  arbitrary  node P in the  network and rank the n - 1 
other nodes in order of their distance from P. If P is paired 
with a  node in the (k + 1)st position in this list (i.e., his kth 
neighbor), he will interfere with (hit) exactly k + 1 nodes 
when he transmits. By assumption, P is' equally likely to be 
paired with  any of the nodes, and so the  hitting distribution is 
given by 

We must now select an appropriate set of values for p k .  In 
order for  the sum of  the  exponent  of ( 1  1 )  to be bounded,pk 
must be O(l /k ) .  We thus select P k  = l / k  and  note  that  this 
somehow corresponds to the  optimality  condition G = 1 in 
[2] . With these values for pk and hk,  the sum in the  exponents 
of (1 1 )  is 

= Gm [---I n - 2 0 (log n )  
n + -  n - 1  n - 1  

= 1  

and so the interference factor will  be 

1 

e 
I = - (for large networks). 
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Fig. 1 .  Ten  node limited power  network. 

We can now evaluate (12) to obatin  the  total  network  through- 
put. 

Ynode =-[fi ( l  -- - -) ] 1 k - 2  1 1 n - 2  

n - 1  k=3  n - 2  k n - 1  

k = 2  k 

Since the  throughput  for each node is identically distributed, 
the  total network  throughput y will be given by nynode.  

. = q q - -  n - 1  k = 3  k - 2   n - 2  - k 1 n - 1  -) 1 n - 2  3 

Summing these series [4] and performing some algebraic 
manipulation, we find  that  the  asymptotic behavior for large . 
networks is  given by 

log (n) + c-- 71’ 
6 

lim y =  ( 1  9) 
n-00 e 

where C is  Euler’s constant. This can be approximated by 

log (n) - 1 
7% e 

The above results were  derived with no reference to the 
dimensionality of the network. We can therefore achieve a 
throughput logarithmically proportional to the network size 

for all networks satisfying a uniform traffic pattern by exact 
adjustment of transmission range. It must be pointed out, 
however, that  the  throughput  for all  pairs of nodes in the  net- 
work is not  the same.  Nodes that are  close together (and,  thus, 
have  high transmission probabilities since they do not interfere 
with many other nodes) will  achieve  higher throughputs  than 
those  that are far apart (recall that  the background interfer- 
ence is  assumed to be uniform for all nodes in the  network). 
Even the node with  the smallest throughput (in the worst case 
this node will hit n - 2 other nodes) will  have a  throughput of 
l /ne  for large networks, which is the same as that  for  the fully 
connected case  (in which every node achieves a  throughput 
of llne). Thus, the  node experiencing the worst performance 
will be doing no worse than  for  the fully connected case, 
whereas nodes close together will far exceed this  throughput. 

B. Simulation 
In order to check the validity of this  model, we developed 

a simulation program to compute  the  throughputs  for these 
networks. This  program operates as follows (described for  a 
two-dimensional network). 

A random network is generated with points uniformly 
distributed inside the unit circle. Pairs  are then randomly 
assigned; in  fact, we  pair node 1 to node 2,  node 3 to node 4, 
and so on (this being a perfectly random pairing).  With this 
pairing, the transmission radii are. determined so that com- 
munication can take place, and the adjacency matrix is com- 
puted. We then  compute  the transmission probability for  a 
node to be the reciprocal of the number of nodes within range 
of that node. From this we can compute  the success probabili- 
ties for each node  and,  hence,  the  network  throughput. These 
data are then averaged  over  several runs (i.e.,  over  several 
random networks and pairings). 

In Fig. 2 we plot  the model and simulation results for  one- 
dimensional networks averaged  over 50 networks for each 
data  point. We see excellent agreement between model and 
simulation. The agreement is  less good for small networks 
since  edge effects are significant (i.e., a large proportion  of the 
nodes are close to the edge of the network). Nodes near the 
edge of  the  network suffer less interference than is predicted 
by our assumption of the background interference being con- 
stant. As the number of nodes increases; these edge effects 
become proportionately less important. In the  simulation,  the 
transmission probability was p = l / k ,  where k is the number 
of nodes hit by  the transmission and partners not necessarily 
using the same k .  

Fig. 3 shows  similar results for  the two-dimensional case. 
We again notice good agreement between the model and the 
simulation results for large n. In two dimensions the model 
requires larger networks before the agreement is good, due to 
the higher proportion of nodes on  the edge of  the area which 
suffer less interference. It is for  this reason that  the simulation 
results exceed that predicted by  the model for small networks. 

C. Other Transmission  Policies 
In addition to using the transmission policy of p = l / k ,  we 

have  also investigated several others, as outlined below. The 
performance of the following schemes is shown in Figs. 4-6. 
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Fig. 2. One-dimensional random network-throughput. 
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Fig. 3.  Two-dimensional random network-throughput. 
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1 )  Fixed Transmission Probability: If  we  use as fixed trans- 
mission probability (independent of the  hitting degree and  the 
network size), the  throughput as a  function of network size 
rapidly falls to zero since too much interference is generated. 
Substituting fixed p k  = p and hk = l /n - 1 into  our model 
(1 2) ,  we have 

n 

As an example, we set p = 112 and find 

We plot this in Fig. 4, along with corresponding simulation 
results. 

2 )  Hearing Degree: We also tried using the hearing  degree 
rather  than  the  hitting degree for determining the transmission 
probability. Fig. 5 shows the performance for the case  where a 
node uses its own hearing degree to determine the transmission 
probability. We see that  the  throughput is independent  of  the 
network size and appears to be constant  at 2/e .  A justifica- 
tion of this is that  the number heard has mean n/2 and  that 
the distribution has a sharp peak for large n (see the Appen- 
dix). Each node,  therefore, hears n/2 nodes, each of which 
transmits with probability 2/n.  The network throughput is thus 

n 
Fig. 4. Fixed transmission probability. 

Y 
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Fig. 5. Transmission probability based on hearing-degree. 
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3) Estimated Degree: From a practical (implementation) 
point of view, it may be difficult for  a node to determine 
exactly how many nodes hear when  it transmits. We tried 
using an estimate of the  hitting degree, equal to the number 
expected to be within range  based on the transmission power 
and density of nodes (both quantities would probably be 
available to a  node in a real network). Fig. 6 shows the per- 
formance of this scheme and we find, as expected,  that  the 
throughput grows logarithmically with the network size (note 
that  for  this case both nodes of  a partnership will  use the same 
transmission probability). We note  that  the performance is 
not quite as good for this scheme as when we used the actual 
hitting degree.  This is probably mainly due to edge effects 
where the nodes actually have  lower  degrees than would be ex- 
pected (and also suffer from less interference). 

VI. BEST TRAFFIC MATRIX 

In the previous  discussion the transmission range was deter- 
mined by the traffic matrix. Since we did not allow multi- 
hop paths, we required that  the transmission power of a node 
be exactly sufficient to reach his communication partner. By 
changing the traffic matrix we can therefore further reduce 
the transmission ranges. We study this problem in this section, 
attempting to answer the following question: for a random 
placement of  nodes,  what  traffic  ma&  allows  the highest 
traffic  levels to be  supported [ 131 ? We note here that we only 
need consider one-hop communication, since we could ini- 
prove any  multihop configuration (to achieve a higher through- 
put  in terms of end-to-end messages) by considering each hop 
of the message to be a separate message.  The performance 
of  the best traffic matrix is somehow a measure of the  net- 
work topology.  It corresponds to the  total capacity (summed 
over  all links) in a  traditional  network, since the best traffic 
matrix  for  a  traditional  network is to send traffic to all neigh- 
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Fig. 6 .  Transnissionprobability  based onan  estimate  ofhitting  degree. 

bors at  a rate equal to the capacity of the  link. The perform- 
ance that we obtain will therefore be an upper bound  on  the 
performance obtainable over the set of all traffic matrices. 
As we  saw above, we can obtain  a  throughput  proportional to 
the logarithm of  the number of nodes for  a random traffic 
matrix. It is commonly the case that  the traffic requirements 
will exhibit some locality and we are therefore interested to 
see  if  we can obtain  better  than logarithmic performance for 
traffic matrices that exhibit locality. In particular, our bounds 
are for very local traffic. In a real network we expect  that  the 
traffic requirements will  be between random and very local, 
and we thus expect that  the performance will be between 
logarithmic and  the  bound obtained below. 

First, we develop some simple upper and lower bounds on 
the maximum throughput  that can  be attained under any traf- 
fic matrix. It is  clear that  the performance of the "best" traf- 
fic matrix will  lie between these bounds. The determination of 
the  true "best" traffic matrix is hard. 

A .  Simple  Bounds on Performance 

In this section we  give simple upper and lower gounds on 
the performance for  the best possible traffic matrix (BTM). 

1 )  Upper Bound: If there were no interference between 
pairs of nodes, we would be able to achieve a performance 
equal to that obtainable by n/2  independent pairs. One inde- 
pendent pair  is able to support  a  throughput of 1/2 (which is 
achieved for  a transmission probability of 1/2)  [ 1 ] . Thus, 

2)  Lower  Bound: As a lower bound we consider how many 
nodes (of the n total) can be paired up  without  any of them 
causing interference to any other pairs (clean pairs).  The 
unpaired nodes are assumed to generate no traffic. Consider a 
pair of nodes in the  network, P and Q. If these are to com- 
municate without causing any interference, Q must be P's 
nearest neighbor and P must also be Q's nearest neighbor. 

a) One  Dimension: Here we have n nodes randomly 
located on  the unit line. For simpficity we approximate this 
by  a Poisson  process of density A(=n). (Note that this  approxi- 
mation is only good for n % 1 .) Fig. 7 shows two points P 
and Q in this random network. Suppose Q is P's nearest 
neighbor. The distribution Fx(x) of X (the length of the line 

+ x b x +  

Fig. 7. No interference  in  one-dimensional  network. 

@) can be found  by noting that  for Q to be P's nearest neigh- 
bor, there must be no point within a distance x on either side 
of P (see  also [7], [ l l ] ) .  Thus, the distribution of  neighbor 
distance is  given by 

Fx(x)  = Pr { X Q X }  

= 1 -Pr{X>x} 

- - 1 - , - 2 h x ,  

The density is thus 

f ( x )  dx = 2Ae-2hx dx. (25) 

For no interference we require that there be no point closer to 
Q than P .  Thus, if Q is to the left o f P  as shown in the figure, 
there must be no point within a distance x to  the left of Q. 
The probability of finding no  point  there, f ,  is 

so the probability that a  point is a member of a clean pair,g, is 

We see, then,  that we can find a traffic matrix which can 
support (2 /3)   (n /2)  clean pairs, which will allow a  throughput 
of ( 2 / 3 )  (44) = n/6. Since this is readily achievable, it is 
clearly a lower bound on the Performance of the "best" 
traffic  matrix. 

Letting yBTMk represent the  throughput of the best pos- 
sible configuration for  a k-dimensional network, we have 

b) Two Dimensions: We now consider the two-dimen- 
sional analog. Considering  Fig. 8, let Q be P s  nearest neighbor. 
We assume that P and Q are randomly located in the unit 
circle by  a Poisson  process of parameter A. (This model is not 
exact, as in fact we place precisely n points in a  unit circle, 
but  for large n it is a good approximation.) By analogy to the 
one-dimensional case, the density f (x )  of the length of the 
line ~2 is 

f ( x )  dx = 2 A r r ~ e - ~ " ~ ~   d x .   ( 2 9 )  

For no interference we require that  there  be no point closer to 
Q than P .  n a t  is, there is to be no point in the shaded area A 
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Fig. 8. No interference in two dimensions. 

encircling Q (there is no point in the circle around P since Q is 
the nearest neighbor). This area can be found to be 

A =x2(:+$) 

= 1 . 9 1 3 ~ ~ .  (30) 

The probability of finding no  point in this area is e--hA. So 
the probability that  a point is a member of a clean pair, g ,  is 

= lm 2 ~ ~ ~ e - h A  e - h n r 2  dx 

- - 
71 

71 + 1.913 

= 0.622. (3 1)  

This result can  also  be found in [3] . 
Thus we can find a traffic matrix allowing a  throughput of 

0.62n/4,  which is therefore a lower bound. Combining these 
equations we have the following relationship: 

0.62n n 
- < G - .  

4 4 

We see, therefore,  that we have found linear upper and lower 
bounds for  the performance of the best  possible traffic matrix, 
and  that  the lower bound is achievable. So, by appropriate 
selection of the traffic matrix  and transmission range, we can 
achieve throughputs linearly proportional to the number of 
nodes in the  network. Motivated by this greatly improved 
performance, we studied using  small transmission ranges for 
multihop networks in [9 ]  , [15] . We found  that for two- 
dimensional networks this linear performance, combined with 
the fact that we must travel a distance (number of hops) 
proportional to the square root  of  the number of nodes in the 
network, results in a  throughput  proportional to the square 
root of the number of nodes in the  network. 

B. Case Studies 

In order to validate the above results, we now present some 
traffic patterns  that achieve performance between these 
bounds. Since determination of the truly optimal traffic 
matrix is a  hard  problem, we look  at some specific connection 
strategies allowing us to achieve high throughputs. For some of 
these cases  we  can proceed with the analysis outlined earlier, 
but in all  cases  we  give simulation results. 
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Fig. 9. Two-dimensional NUN-comparison to bounds. 

C.  Nearest  Unpaired  Neighbor (NUN) in Two Dimensions 
In this section we consider random two-dimensional net- 

works and give a low interference connection strategy, the 
behavior of which exceeds the lower bound on optimal 
throughput given in Section VI-A-2-b. 

Algorithm A, below, describes the policy for pairing nodes 
in the nearest unpaired neighbor scheme. 

Algorithm A-Nearest  Unpaired  Neighbor (NUN): 
1) Generate the random network, consisting of  an  even 

2) Mark au nodes as unpaired. 
3) Find the  two closest unpaired nodes and connect them; 

mark them as paired. 
4) If all nodes are paired, we  have finished; otherwise, 

return to step 3. 
The traffic pattern generated by this algorithm is satisfied 

by giving each node sufficient power to exactly reach his 
destination. Fig. 9 shows the performance of this scheme in 
comparison to the  bounds developed earlier. 

D.  Nearest  Unpaired  Neighbor (NUN) in  One  Dimension 

number of nodes. 

This  is the one-dimensional equivalent of the two-dimen- 
sional scheme outlined above. Fig. 10 shows the simulation 
results for networks using transmission probabilities based on 
the node’s hitting degree. 

In the following section we consider a simpler version of 
this, in which every node is connected (adjoined) to his left (or 
right) neighbor. 

E. Adjoining in One  Dimension (ADJ) 
For this scheme we randomly locate n points on the unit 

line and then connect adjacent pairs starting from one end. In 
Fig. 12 we show the performance for this scheme. We notice 
that the performance is  very  similar to the NUN scheme out- 
lined above. Let  us analyze this case. 

1) The Hitting Distribution: We know the distribution of 
the distance to the neighbor on your left (or right) and we 
must determine how many points are expected to fall in this 
distance on  the  other side of the  connection, this being the 
number of points that will hear you. The distribution of the 
neighbor distance, x, is 

f(x) dx = Ae- dx. (33) 

The points that  you  hit are precisely those that fall in a dis- 
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Fig. 10. One-dimensional NUN-comparison to bounds. 

tance x on  your right (left). The  number  of points falling in 
this distance on  the  other side is  Poisson distributed;  thus 

(b)’ Pr {i in a distance x} = e--hx - 
i! 

so we  have 

(34) 

We can  derive this  distribution in an  alternate manner with- 
out having to rely on  the exponential or Poisson distributions 
as follows. In  Fig. 1 1 ,  suppose that node P (whose partner is 
Q)  hits i excess (i.e., other  than himself  and  his partner) 
nodes. Let R be the first point on the left that cannot hear 
P. For this to  happen, P must  be to  the right of the midpoint 
of @; the probability of this event is 1/2 .  Ifx is the distance 
from P to Q, then consider a point P’ at  a distance x to  the left 
of P. Now all the i excess points must fall to  the left  of the 
midpoint  of @’ (i.e., to  the  left of P). The probability of this 
event is ( 1  /2 ) i .  Thus, the probability that P hits i points is 

2 )  Evaluation of Interference: We can determine  this  inter- 
ference factor directly from ( 1  1 ) .  

As before, we  use P k  = l / k ,  and using the hitting  distribution 
found above, i.e., hk = (1 /2)k-  ’ ,  we find 

i points 

’ -  T 1 I I -  

+x+- x+ 

Fig. 11. One-dimensional ADJ-hitting degree. 

These  sums  can be evaluated to give 

This  expression gives 

From ( 3 )  and (4), the throughput  for  node j ,  y,, is  given by 

2  12 
(for large n )  

Thus, the  total network  throughput y is  given  by 

y =Z 0.176n (for large n). (41)  

Fig. 12 shows the throughput predicted by  this  model  and 
simulation results from the  “hitting degree”  transmission 
scheme. We see  very  good  agreement  between analytical and 
simulation results. We do  not analyze the two-dimensional 
network but, due to the similarity of the curves found by 
simulation,  anticipate that a similar result applies. 

VII. CONCLUSIONS 
In this paper we presented a general model  for determining 

the throughput of a homogeneous  single-hop random  slotted 
ALOHA network. We then proceeded to consider  various 
examples. We first used our  model to give a new  derivation of 
the known  capacity of l / e  for fully connected  networks. We 
then  introduced  the idea  of restricting transmission  range and 
found  that we  could  achieve a  throughput  proportional to  the 
logarithm of  the number of nodes  in  the  network  for  a  uni- 
form  traffic  matrix. We then considered the problem of find- 
ing the  “best”  traffic  matrix. We first found some  simple 
bounds  and  then used our  model to predict the performance 
for  a  traffic  matrix  that seemed to have  low interference  and 
found  that  a  throughput  proportional to  the number  of  nodes 
in the network could be achieved.  Since traffic  requirements 
in real networks  tend to exhibit some locality, the perform- 
ance  would  be  between the logarithmic  and linear performance 
that we  have demonstrated  for  random  and very local traffic. 

Finding that range reduction results in  such a dramatic in- 
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crease in performance  leads us to suspect that benefits might 
also be obtained by  reducing  transmission  range in  multihop 
networks. We do not investigate multihop  networks in this 
paper,  but as reported in  [9] , [15] , reducing  range in  multi- 
hop networks is  also beneficial. 

We believe that  the  model developed in  this paper  can be 
applied to other homogeneous  single-hop networks. In addi- 
tion, it can  be  used to evaluate the  one-hop  throughput 
(i.e., ignoring the fact that messages  may  be transmitted  more 
than once in their path  from source to destination) of  an 
arbitrary m u l t i h o p  network. 

APPENDIX 

DERIVATION OF HEARING  DISTRIBUTION 

We wish to evaluate the probability that  an arbitrary  node 
in the network will  hear another  node. Let  us  call the  proba- 
bility of  hearing a particular k-hitter a k .  Assuming that  the 
“hits” of this node are uniformly distributed over the set of 
nodes, we  can  evaluate ak. 

Thus, the probability  of  hearing j other  nodes, Hi (the hearing 
distribution), is the binomial distribution given  below. (Note 
the subscript for H is j + 2 since a  node always  hears two 
others-himself and his partner.) 

Thus, the mean number of  nodes  is (42)  + 1, including the 
node himself and his partner. 

r41 
[51 

[91 

By unconditioning on k ,  we  can  evaluate the  probability a 
that we  hear any particular other  node. 
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