
Optimal Search Performance in Unstructured Peer-to-
Peer Networks With Clustered Demands

Saurabh Tewari, Leonard Kleinrock
Computer Science Department

University of California at Los Angeles
Los Angeles, CA 90095, U.S.A.

{stewari,lk}@cs.ucla.edu

Abstract—This paper derives the optimal search time and the
optimal search cost that can be achieved in unstructured peer-to-
peer networks when the demand pattern exhibits clustering (i.e.
file popularities vary from region to region in the network).
Previous work in this area had assumed a uniform distribution of
file replicas throughout the network with an implicit or explicit
assumption of uniform file popularity distribution whereas in
reality, there is clear evidence of clustering in file popularity
patterns. The potential performance benefit that the clustering in
demand patterns affords is captured by our results. Interestingly,
the performance gains are shown to be independent of whether
the search network topology reflects the clustering in file
popularity. We also provide the relation between the query-
processing load and the number of replicas of each file for the
clustered demands case showing that flooding searches may have
lower query-processing load than random walk searches in the
clustered demands case.

Keywords- Flooding, Peer-to-Peer Networks, Random Walk,
Optimal Search Time, Optimal Search Cost, Clustered Demands

I. INTRODUCTION
Peer-to-peer networks are loosely organized networks of

autonomous entities (user nodes or “peers”) which make their
resources available to other peers. Since each new peer brings
additional resources, these networks are fully scalable provided
that the resources one offers can be found by the peers who
need those resources. Thus, finding the desired resource is a
critical issue in peer-to-peer networks. Keeping a centralized
index of the resources each peer is offering is an approach that
has scalability issues and a single point of failure.
Alternatively, a direct approach for finding the desired resource
is to have the peer wanting a resource to query other nodes to
find a node that has that resource. Since a node cannot
realistically keep the addresses of all other peers, an overlay
network is constructed where each node keeps addresses of a
few other peers (called its neighbors) through whom it reaches
the rest of the peers. Peer-to-peer networks following this
approach are referred to as unstructured peer-to-peer networks
to distinguish them from structured networks (e.g. [6]) which
map each unique resource to a particular node in the network,
an approach that can be more efficient but whose lack of
flexibility introduces other issues [5]. In this paper we focus on
unstructured peer-to-peer networks and address two major
concerns in these networks: the time to find a peer who is

offering a particular resource (the search time), and the amount
of additional traffic introduced in the network in the process of
locating the peer that is offering that resource (the search cost).
The reference example is of peer-to-peer file sharing networks
and we refer to resources as files throughout the rest of the
paper.

As in our earlier related works [7, 8], we approximate the
search time for a file in the network by the average number of
hops it takes for a query to reach a node that has that file, and
use average search time, i.e., the average time it takes to find a
peer that is sharing the desired file, as our first metric for search
performance. Our second metric is the search cost. Since a
search for a file is done via peers sending query messages to
other peers, the number of query messages each peer processes
equals the additional traffic introduced in the network by a
query. Therefore, we approximate the search cost by the query-
processing load, i.e., the average number of nodes that are
queried per file request. One expects that if many peers are
sharing a file, in any reasonable search method, the search time
and the search cost for the file will be smaller than if very few
peers were sharing that file. In the extreme case, if all nodes
could store all files, no search would be required. Since each
peer has finite storage space, a system designer seeks to get the
optimum search performance possible given the per-node
storage constraint. The optimal average search time, the
optimal query-processing load and the file replica distribution
(number of replicas of each file as a function of that file’s
popularity) at the respective optima have been derived in [7]
under the assumption of a uniform distribution of the file
replicas. However, measurements on deployed peer-to-peer file
sharing networks show a significant amount of clustering in
interests [4], i.e., the popularity of a set of files in
(geographical) regions differs from region to region. Further,
more replicas of a file are found in those regions where that file
is more popular.

The main contributions of this paper, given in Section 5, are
the aforementioned optimal search performance expressions for
the clustered demands case using the network model in [8] that
allows for incorporating clustering in demand and file replica
distribution. Section 3 gives the network model and the search
time results for the model from [8]. We derive the query-
processing load as a function of the file replica distribution for
the network model in [8] in Section 4 for use in our

optimization. Related work, including the results in [7], is
discussed in Section 2. Our conclusions are given in Section 5.

II. BACKGROUND AND RELATED WORK
Flooding and random walking are the two main alternatives

in how the search is conducted over the search network when
no information is available about which nodes may have the
file. In flooding, the node that wants the file sends a query to
all its neighbors and they, in turn, forward the query to all their
neighbors (except the one which sent the query) until a copy of
the file is found. In random walking, the query is sent to one
randomly selected neighbor and if that neighbor does not have
the file, it forwards the query to one of its neighbors (selected
randomly) other than the neighbor that sent it the query.

When nodes are similar in capacities and file interests (i.e.
when files and file popularities are uniformly distributed), the
Erdos-Renyi random graph [1] is a good topology model1 for

TABLE I. NOTATION USED

M Number of nodes

L Number of clusters

N Number of unique files

K Per-node storage size (in number of files)

d Average degree of the search overlay topology

q Probability of any given pair of inter-cluster nodes having a
direct link

ni Number of replicas of file i in the entire network

nia Number of replicas of file i in the “high-density” cluster

nib Number of replicas of file i in a “low-density” cluster

λi Request rate of file i per node (averaged over the network)

λia Request rate of file i per node in the “high-density” cluster

λιb Request rate of file i per node in a “low-density” cluster

λ =
1

N
ii

λ
=∑

τix Average search time for file i with search method x a

Qix Query-processing load for file i with search method x a

τixa
Average search time for file i from the high-density cluster
with search method x a

Qixa Query-processing load for file i from the high-density
cluster with search method x a

τixb
Average search time for file i from a low-density cluster
with search method x a

Qixb Query-processing load for file i from a low-density cluster
with search method x a

τx
opt Optimal average search time with search method x a

Qx
opt Optimal query-processing load with search method x a

Qx
τopt Query-processing load with the replica distribution that

minimizes the average search time with search method x a
a For flooding search: x=F, For random walk search: x=R e.g. τiFb=Average search time for file i from a

low-density cluster with flooding search

1 When node capacities are very skewed, a power-law random graph is a

topology choice which distributes the query-processing load unevenly among
the peers but yields faster search methods (e.g. [2]).

TABLE II. RESULTS FOR UNIFORM DISTRIBUTION OF REPLICAS ([7])

Replica
Distribution Equation

τiF(ni) = logd(M/ni) (1) Valid for
arbitrary
replica

distributions QiF(ni) = QiR(ni) = τiR(ni) = M/ni (2)

1
log logopt

F

N i i
d di

Kλ λτ
λ λ=

= − −∑ (3)
ni ∝ λi

QF
τopt = N

K
 (4)

ni ∝ √λi QF
opt = QR

opt = τR
opt =

2
1

()N
ii

K
λ

λ
=∑ (5)

the overlay search network. The optimal search performance
under the constraint of finite per-node storage is covered well
by [3, 7] with the assumption of uniform distribution of file
replicas. We summarize these results in Table 2. Table 1 gives
the notation used in the paper. In addition to the results in
Table 2, [7] compare random walking and controlled flooding
at their respective optimal replica distributions and show the
benefits that controlled flooding provides over random
walking. In this paper, we seek to obtain results analogous to
those in Table 2 when the file replica distribution and the
demand patterns are not uniform.

Since each link is equiprobable in an Erdos-Renyi random
graph, it is not suited for modeling clustering in file interests.
Reference [8] provides a model of peer-to-peer networks that
allows for incorporating varying degrees of clustering in
demand and file replica distribution and derives the search
times for these networks. Our work in this paper uses the model
and the search time results from [8]. We list the relevant
material from [8] in the next section.

III. A MODEL FOR CLUSTERED DEMANDS (FROM [8])
Let us assume that our peer-to-peer network has M nodes

and that these M nodes are clustered in, say, L clusters. For
ease of discussion, we make the following assumptions. Each
cluster is of the same size (thus, each cluster has M/L nodes).
There are only two levels of popularity of each file and there is
only one cluster in which a file is more popular. Thus, for all
files i = 1 to N, file i has request rate λia per node in one cluster
and λib per node in each of the remaining L-1 clusters where λia

> λib and Mλi =
L
M λia + (L-1) M

L
λib. where λi is the average

node request rate for file i across the entire network. Let us
further assume that the ni replicas of file i are split as nia
replicas in the cluster where the file is more popular and nib
replicas in each of the remaining clusters where nia>nib, ni=
nia+(L-1)nib and nia<M/L. One may then say that the cluster
where file i is more popular has a higher density of file i
replicas whereas a cluster where the file is not as popular has a
lower density. Since clustering has already been accounted for,
we assume that within each cluster the files are uniformly
distributed over all the nodes in that cluster.

One possible model for the search network is to assume that
the clusters are totally disconnected (i.e. there are no inter-
cluster links) and within each cluster, the network follows the
Erdos-Renyi random graph topology. For this model of

TABLE III. SEARCH PERFORMANCE WITH DISCONNECTED CLUSTERS

Derived
from Equation

τiFa(nia, nib) = logd(M/niaL) (6)
(1)

τiFb(nia, nib) = logd(M/nibL) (7)

QiFa(nia, nib) = QiRa(nia, nib) = τiRa(nia, nib) = M/niaL (8)
(2)

QiFb(nia, nib) = QiRb(nia, nib) = τiRb(nia, nib) = M/nibL (9)

clustering, the search time and the query-processing load
expressions can be obtained from the analogous expressions for
the uniform distribution case in Table 2 with (1) and (2)
yielding (6), (7) and (8), (9) respectively as shown in Table 3.

While assuming disconnected clusters makes for an easy
first-order analysis, actual peer-to-peer networks do not
typically have such fully disconnected clusters. There is
evidence of strong clustering but intercluster links do exist in
real networks so neither an Erdos-Renyi random graph over the
entire network nor the fully disconnected clusters model is an
appropriate topology. A topology model that gives us a
continuum of topologies with the Erdos-Renyi random graph at
one extreme and the fully disconnected clusters at the other
extreme is the following random graph variant. Consider a
network in which the probability of including an intra-cluster
link is p and the probability of including an inter-cluster link is
q and the average per-node degree is d as before, i.e., assuming
L clusters of equal sizes, the nodes are partitioned into L
clusters and the probability that any given pair of intra-cluster
nodes is connected is p and the probability that any given pair
of inter- cluster nodes is connected is q. Thus, each node has an
average of (M/L)p links to nodes within its cluster and (M-
M/L)q links to nodes outside its cluster. Hence, the average
degree d = (M−M/L)q + (M/L)p and if one were to hold the
average degree constant, defining one of p or q defines the
other. Varying q provides a continuum of topologies from the
completely disjoint clusters (q=0) to the Erdos-Renyi random
graph (p=q). A flooding search in these topologies expands to
d other nodes (in the higher-density or a lower-density cluster)
in the next hop independent of whether the search process is at
a node in the higher-density cluster or a lower-density cluster.
Thus, the average number of nodes queried per search expands
exponentially and the dτ expression for the number of nodes
queried given the average search distance of τ [7] still holds.

Reference [8] gives analytical bounds on the search time for

TABLE IV. SEARCH PERFORMANCE IN THE GENERAL CASE

Equation
in [8] Equation

(11) τiFa(nia, nib) ~ (1)()log []ia ia ib
d

n L q L n n
M d

− −− − (10)

(12) τiFb(nia, nib) ~ ()log []ib ia ib
d

n L q n n
M d

−− + (11)

(7)
τiRa(nia, nib) = QiRa(nia, nib) =

 1(1)()[]
(/)()

ia ia ib

ib

n L q L n n
M n L M d Mq Mq

−− −−
− +

 (12)

(8)
τiRb(nia, nib) = QiRb(nia, nib) =

 1()[]
(/ ()

ib ia ib

ia

n L q n n
M n L M d Mq Mq

−−+
− +

 (13)

flooding search in the aforementioned network model and
indicates (via simulations and analysis) that the search time can
be approximated well by the lower bound shown in (10) when
searching from the high density cluster and by the upper bound
shown in (11) when searching from the low-density clusters.
Since the query-processing load is same as the average search
time for random walking, we get (12) and (13) directly from
[8]. One can verify that for disconnected clusters i.e. q=0, (10)-
(13) revert to (6)-(9) and for a uniform distribution of file
replicas i.e. nia=nib=ni/L, (10)-(13) revert to (1) and (2). The
query-processing loads as a function of the number of file
replicas of each file are derived in the next section.

IV. QUERY-PROCESSING LOAD WITH CLUSTERED DEMANDS
As discussed earlier, for the network model described in

Section 3, the query-processing load in the network can be
estimated by dτ when the average search distance is τ. Hence:

Theorem 1: The query-processing load for a flooding search
in the clustered peer-to-peer network defined in Section 3 is

 QiFa(nia, nib) ∼ 1(1)()[]ia ia ibn L q L n n
M d

−− −− (14)

for searches initiated in the high-density cluster, and is

 QiFb(nia, nib) ∼ 1()[]ib ia ibn L q n n
M d

−−+ (15)

for searches initiated in a low-density cluster. g

Notice that unlike the uniform distribution case, the query-
processing load for the flooding search and the random walk
search are different now. In fact, we can show that:

Corollary 1: For the clustered peer-to-peer network defined in
Section 3, (a) From the high-density cluster, a flooding search
has a lower query-processing load than a random walk search
whereas (b) From a low-density cluster, a flooding search has a
higher query-processing load than a random walk search i.e. for
searches for file i,

QiRa(nia, nib) > QiFa(nia, nib)

QiRb(nia, nib) < QiFb(nia, nib)
Proof:
Let a = niaL/M, b = nibL/M, c = q(nia−nib)/d, e = Mq/d. Then
QiFa = [a–c(L−1)]−1, QiRa = [a–c(L−1)/[b(1−e)+e]] −1 and QiFb =
[b+c]−1, QiRb = [b+c(L−1)/[a(1−e)+e]] −1. Since a < 1, b < 1 and
1−e > 0, we get b(1−e)+e < 1 and a(1−e)+e < 1. b(1−e)+e < 1
⇒ c(L−1)/[b(1−e)+e] > c(L−1) ⇒ a–c(L−1)/[b(1−e)+e] < a–
c(L−1) ⇒ QiRa(nia, nib) > QiFa(nia, nib). Similarly, a(1−e)+e < 1
⇒ c/[a(1−e)+e] > c ⇒ b+c/[a(1−e)+e] > b+c ⇒ QiRb(nia, nib) <
QiFb(nia, nib). g

We observe that, while the request rate in the high-density
cluster, λia, should be larger than the request rate in a low-
density cluster, λib, it is not clear whether, for arbitrary replica
distributions, the lower query-processing load offered by a
flooding search in the high-density cluster offsets the higher
query-processing load incurred by the flooding search in the

low-density cluster after weighting the query-processing costs
by λia and λib respectively with λia > λib.

Corollary 1 also suggests that, for arbitrary replica
distributions, it may be better for query processing to use
flooding searches in the high-density cluster and random walk
searches in the low-density clusters (at the cost of significantly
larger search times for searches from the low-density clusters)
if it were known that the item being searched has “low-density”
in the local cluster (a simple approach may be to use flooding
for a short hop-limit which would allow flooding searches from
the high-density cluster to complete and assume the incomplete
searches to be searches in a low-density cluster).

V. SEARCH PERFORMANCE OPTIMIZATION
The optimal average search time τx

opt and the optimal
query-processing load Qx

opt over all file requests in the entire
network are:

 τx
opt =

1

1 1(1)
N

ia ib
ixa ixb

i L L
λ λτ τ
λ λ=

 + −  
∑ (16)

 Qx
opt =

1

1 1(1)
N

ia ib
ixa ixb

i

Q Q
L L

λ λ
λ λ=

 + −  
∑ (17)

where x=F for flooding search and =R for random walk search.

For the case of disconnected clusters, where (6)-(9) are the
relevant expressions, the same steps as in [7] can be followed
for the search performance optimization to yield the optimal
results summarized in Table 5.

The optimization procedure in the general clustering case is
the same as in [7] but the solution is harder to obtain. We
summarize the optimization results for flooding search in
Theorems 3 and 4. The results for random walk search
optimization are not provided.

A. Average Search Time Optimization for Flooding Search
The Lagrangian for the average search time optimization is

H =
1

(1)()1 log ()
N

ia ia ia ib
d

i

n L q L n n
L M d

λ
λ=

− −− −
∑ +

1

()1(1) log () ([(1)])
N

ib ib ia ib
d ia ib

i

n L q n n n L n KM
L M d

λ γ
λ =

− − + + + − −
∑

TABLE V. OPTIMAL SEARCH PERFORMANCE: DISCONNECTED CLUSTERS

Optimal
Replica

Distribution
Equationa

τF
opt=

1 1

1 1log 1 log log
N N

ia ia ib ib
d d d

i i

K
L L

λ λ λ λ
λ λ λ λ= =

 − − − − 
 

∑ ∑ (18)
{nia ∝ λia ,
 nib ∝ λib}

QF
τopt = N

K
 (19)

{nia ∝ √λia ,
 nib ∝ √λib}

QF
opt=QR

opt=τR
opt=

2

1

1 1 11
N

ia ib
iK L L

λ λ
λ =

   + −   
   

∑ (20)

a As in [7], we still have the constraints that 1, 1, ,ia ib ia ib
M Mn n n n
L L

≥ ≥ ≤ ≤ and, hence, (18), (19) hold

if iaL L
KM K

λ
λ

≤ ≤ and ibL L
KM K

λ
λ

≤ ≤ ∀i (see reference 4 in [7] for conditions under which (20) holds).

Differentiating w.r.t nia and nib respectively, we obtain:

(1) 1[] (1)1 [] 0(1)() ()ln

ia
ib

ia ia ib ib ia ib

L q L q
L M d L d

n L q L n n n L q n nd
M d M d

λ λ
γ

λ

−− −
− + + =− − −− +

(1) 1(1)()1 [] (1) 0(1)() ()ln

ia
ib

ia ia ib ib ia ib

q L L q
L d L M d Ln L q L n n n L q n nd

M d M d

λ λ
γ

λ

− − −
− + + − =− − −− +

These equations are satisfied2 by

 niaL/M − q(L−1)(nia−nib)/d = kλia (21)

 nibL/M + q(nia−nib)/d = kλib (22)

where k is a constant whose value is to be determined. Thus, at
the optimal replica distribution, λi = λia/L+(1−1/L)λib= [nia/M
− q(1−1/L)(nia−nib)/d + (L−1)nib/M + q(1−1/L)(nia−nib)/d]/k =

[(L−1)nib+nia]/Mk = ni/Mk, i.e. ni ∝ λi.
1 1

N N

i i
i i

KM n Mk λ
= =

= =∑ ∑

= Mλk ⇒ k=K/λ. The following theorem summarizes these
results.

Theorem 3: The average search time for a flooding search in
the clustered peer-to-peer network defined in Section 3 is
minimized when

 nia= [()] [()]ia iKM d Mq L d Mqλ λ λ− − (23)

 nib=[()] [()]ib iKM d Mq L d Mqλ λ λ− − (24)

if L/KM ≤ λia/λ ≤ L/K and L/KM ≤ λib/λ ≤ L/K ∀i, and at the
replica distribution defined by these equations,

 ni = Kλi/λ

 τF
opt =

1

1 1[log () (1) log ()] log
N

ia ia ib ib
d d d

i

K
L L

λ λ λ λ
λ λ λ λ=

− + − −∑

 QF
τopt

 = Ν/Κ

i.e. the optimal average search time is independent of q (the
level of clustering in search network topology) while the query-
processing load when the average search time is minimized is
independent of the skew in file popularity and the level of
clustering in both the search network and the file popularity. g

B. Query-Processing Load Optimization for Flooding Search
The Lagrangian for the query-processing load optimization

is H = 1

1

(1)()1 []
N

ia ia ia ib

i

n L q L n n
L M d

λ
λ

−

=

− − −
∑

1

1

()1(1) [] ([(1)])
N

ib ib ia ib
ia ib

i

n L q n n n L n KM
L M d

λ γ
λ

−

=

− + − + + + − −
∑

2 1 1 1 1[(1)] (1) lnq q d

k M d L dk L
γλ− − + − =

1 1 1(1) (1)[] (1) lnq L q L d
dk L k L M d

γ λ− + − − = −

Differentiating w.r.t nia and nib respectively, we obtain:

2 2

(1) 1[] (1)
0(1)() ()[] []

ia ib

ia ia ib ib ia ib

L q L q
L M d L d

n L q L n n n L q n n
M d M d

λ λ
λ λ γ

−− − − −
+ + =− − −− +

2 2

(1) 1(1)()
(1) 0(1)() ()[] []

ia ib

ia ia ib ib ia ib

q L L q
L d L M d Ln L q L n n n L q n n

M d M d

λ λ
λ λ γ

−− − − −
+ + − =− − −− +

Comparing these equations to those yielding (21) and (22), we
can see that these equations will be satisfied by

 '/ (1)() /ia ia ib ian L M q L n n d k λ− − − = (25)

 '/ () /ib ia ib ibn L M q n n d k λ+ − = (26)

where k’ is a constant whose value is to be determined. Thus,
at the optimal replica distribution, ni = nia+(L−1)nib = (M/L)
(niaL/M−q(L−1)(nia−nib)/d + (L−1)[nibL/M+q(L−1)(nia−nib)/d])
= (k’M/L)[√λia+(L−1)√λib]. Using ni= (k’M/L)(√λia+(L−1)√λib)

in
1

N
ii

n KM
=

=∑ , we get k’ =
1

1 1[(1)]
N

ia ib
i

K
L L

λ λ
=

+ −∑

yielding the following theorem.

Theorem 4: The query-processing load for a flooding search
in the clustered peer-to-peer network defined in Section 3 is
minimized when

1

() (1)

() [(1)]

ia ib
ia N

ia ib
i

dL Mq Mq L
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (27)

1

[(1)]

() [(1)]

ib ia
ib N

ia ib
i

dL Mq L Mq
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (28)

assuming λia and λib are such that 1 ≤ nia ≤ M/L, 1 ≤ nib ≤ M/L
∀i in these equations, and at this replica distribution

QF
opt =

2

1

1 1 1[(1)]
N

ia ib
iK L L

λ λ
λ =

 + − 
 
∑

i.e. the optimal query-processing load is independent of q (the
level of clustering in search network topology). g

As noted in the theorems, the optimal search performance is
independent of the level of clustering in search network
topology. Thus, the results for the optimal search performance
provided in Table 5 for disconnected clusters hold for the
general clustered demands network model except for the file
replica distributions needed for the optimal search performance
which are now defined by (23) and (24) for the optimal average
search time i.e. (18) and (19) and by (27) and (28) for the
optimal query-processing load i.e. (20).

C. Interpretation of Optimal Search Performance Results
We find it very interesting that the optimal search

performance does not depend on the underlying search network

topology. In fact, it is rather intriguing that the optimal average
search time expression for the uniform distribution case seems
to be related to the entropy in the file request probabilities
{λi/λ}, and that the only change in the optimal average search
time expression in the case of clustered demands is that the
entropy now includes the spatial distribution of file requests
(λia/L is the probability that file i is requested by a node in the
high-density cluster and (1−1/L)λib is the probability that file i
is requested by a node in a low-density cluster). Similarly, the
optimal query-processing load also changed only in that the
expression includes the spatial distribution of file requests in
clustered demands case.

Another interesting observation in comparing (21), (22) and
(25), (26) to [3, 7] is that while the expressions for the optimal
replica distribution are complex in the case of clustered
demands, we still have the invariant from the uniform
distribution case that the probability of finding the file over a
random outgoing link from a node is proportional to the file
request rate at that node when optimizing the average search
time and is proportional to the square-root of the file request
rate at that node when optimizing the query-processing load.
We summarize this result in the following theorem.

Theorem 5: For flooding search in the clustered peer-to-peer
network defined in Section 3, we have the following invariants
independent of the level of clustering in demands and the level
of clustering in the search network topology
1) The average search time τ is minimized when pij ∝ λij, and
2) The query-processing load Q is minimized when pij ∝ √λij
where pij is the probability of finding file i over a random
outgoing link from a node in cluster j and λij is the per-node
request rate for file i in cluster j. g

To evaluate the potential benefits of clustering in demands over
the uniform distribution case, we plot the interesting part3 of
(18) and (20) in Figs. 1 and 2 respectively for a peer-to-peer
network of 10 equal-sized clusters and 100 files with zipf-
distributed request rates. Perfect clustering is defined as the
case when the entire demand for a file is from its own cluster
i.e. λib=0 and λia= Lλi. Figs. 1 and 2 clearly demonstrate the
potential advantage of clustering. The advantage in search
performance afforded by perfect clustering can be summarized
the following theorem.

Theorem 6: When the entire demand for a file is from its own
cluster i.e. λib=0 and λia= Lλi, the optimal average search time
τF

opt decreases by logdL and the optimal query-processing load
QF

opt decreases by a factor of L, the number of clusters.

Proof:
Substituting λib=0 and λia=Lλi in (18) and (20), we get τF

opt

=
1

log () log log
N

i i
d d d

i

K Lλ λ
λ λ=

− − −∑ and QF
opt =

2

1

1 N

i
i

K
L

λ λ
=

 
 
 
∑ .

The theorem follows on comparing these to (3), (5). g

3 To eliminate the dependence on d and K, in Figs. 1 and 2, we plot τopt’ =

1

1 1[ln() (1) ln()]
N

ia ia ib ib

i L L
λ λ λ λ
λ λ λ λ=

− + −∑ and Qopt’ =
2

1

1 1[(1)]
N

ia ib

i L L
λ λ
λ λ=

 
+ −  

 
∑

instead of (18) and (20) respectively.

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
% Traffic Inside Cluster

O
pt

im
al

 A
vg

 S
ea

rc
h

Ti
m

e' Uniform distribution case

Perfect Clustering Case

Figure 1. Benefit of Clustered Demands: Optimal Search Time

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
% Traffic Inside Cluster

O
pt

im
al

 Q
ue

ry
-P

ro
ce

ss
in

g
Lo

ad
'

Uniform Distribution Case

Perfect Clustering Case

Figure 2. Benefit of Clustered Demands: Optimal Query-Processing Load

Finally, we note that the penalty over the optimal query-
processing load incurred upon optimizing the average search
time increases in the case of clustered demands. For example,
for the peer-to-peer network shown in Fig. 2, QF

τopt = 100
independent of the fraction of traffic inside the cluster while
QF

opt ~50 in the uniform distribution case but goes down to
~8.5 when 99% of the file requests are from inside the cluster.

All of the above discussion assumes that the optimal replica
distribution can be achieved. In the uniform distribution case,
LRU storage management gave near-optimal replica
distribution [10] but for the clustered demands case, as we can
see in (21) and (22) for the optimal average search time and
(23) and (24) for the optimal query-processing load, the
desired replica distribution depends on the degree of clustering
in the underlying search network topology. However, rather
than being a hindrance, this dependence of the optimal replica
distribution on the underlying search network topology offers
us a very powerful tool to achieve the optimal search
performance. In a preliminary study, we were able to achieve
the optimal query-processing performance with LRU storage
management algorithm by tuning the underlying search
network topology. This suggests that it may be possible to
achieve the optimal replica distribution with any local storage
management algorithm by appropriately tuning the underlying
topology. If this approach of tuning the search network
topology to reach the optimal replica distribution works in
most cases, we may be able to obtain the optimal download

performance [9, 10] (by using an LRU-like approach that
populates file replicas in near-linear proportionality to the file
request rates) and, at the same time, obtain the optimal query-
processing load as well by tuning the underlying search
network topology appropriately.

VI. CONCLUSION
In this paper, we derived results on optimal search time and

optimal search cost in an unstructured peer-to-peer network
when the demand exhibits clustering. The previous work in this
area assumed uniformity in replica and demand distribution.
Since real networks show clustering in demands, our results
provide a more accurate estimate of the search performance
achievable in unstructured peer-to-peer networks. Interestingly,
we found that the gains in the optimal search performance
afforded by clustering in demand patterns are independent of
whether the search network topology matches the clustering in
file popularity. The optimal replica distribution, however, does
depend on clustering in the search network topology. Since the
replica distribution is driven by peer requests, we believe that
tuning the search network topology to match the replica
distribution generated by peer requests is more practical than
matching the replica distribution to the topology. In our
simulations, we were able to operate a peer-to-peer network at
the optimal search cost by tuning the clustering in the search
network topology depending on the clustering in demands
while using LRU cache management at each peer. In the
process of deriving the optimal search performance results, we
derived the relation between the query-processing load and the
number of replicas of each file for the clustered demands case
showing that flooding searches may have a lower query-
processing load than random walk searches in the clustered
demands case.

REFERENCES
[1] B. Bollobas, Random Graphs, Academic Press, London, 1985.
[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker,

“Making Gnutella-like P2P Systems Scalable,” in Proc. of ACM
SIGCOMM, August 2003.

[3] E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-
to-Peer Networks,” in Proc. of ACM SIGCOMM, August 2002.

[4] F. Le Fessant, S. Handurukande, A. M. Kermarrec and L. Massouli,
“Clustering in Peer-to-Peer File Sharing Workloads,” in Proc. of IPTPS,
February 2004.

[5] D. Liben-Nowell, H. Balakrishnan and D. Karger, “Analysis of the
evolution of peer-to-peer systems,” in Proc. of PODC, July 2002.

[6] I. Stoica, R. Morris, D. Karger, M. Kaashoek and H. Balakrishnan,
“Chord: A Scalable Peer-To-Peer Lookup Service For Internet
Applications,” in Proc. of ACM SIGCOMM, August 2001.

[7] S. Tewari and L. Kleinrock, “Analysis of Search and Replication in
Unstructured Peer-to-Peer Networks,” in Proc. of ACM SIGMETRICS,
June 2005.

[8] S. Tewari and L. Kleinrock, “Search Time in Unstructured Peer-to-Peer
Networks with Clustered Demands,” in Proc. of IEEE GLOBECOM,
November 2005.

[9] S. Tewari and L. Kleinrock, “On Fairness, Optimal Download
Performance and Proportional Replication in Peer-to-Peer Networks,” in
Proc. of IFIP Networking, May 2005.

[10] S. Tewari and L. Kleinrock, “Proportional Replication in Peer-to-Peer
Networks,” to appear in Proc. of IEEE INFOCOM 2006, April 2006.

