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Abstract—This paper derives the optimal search time and the 
optimal search cost that can be achieved in unstructured peer-to-
peer networks when the demand pattern exhibits clustering (i.e. 
file popularities vary from region to region in the network). 
Previous work in this area had assumed a uniform distribution of 
file replicas throughout the network with an implicit or explicit 
assumption of uniform file popularity distribution whereas in 
reality, there is clear evidence of clustering in file popularity 
patterns. The potential performance benefit that the clustering in 
demand patterns affords is captured by our results. Interestingly, 
the performance gains are shown to be independent of whether 
the search network topology reflects the clustering in file 
popularity. We also provide the relation between the query-
processing load and the number of replicas of each file for the 
clustered demands case showing that flooding searches may have 
lower query-processing load than random walk searches in the 
clustered demands case. 

Keywords- Flooding, Peer-to-Peer Networks, Random Walk, 
Optimal Search Time, Optimal Search Cost, Clustered Demands 

I.  INTRODUCTION 
Peer-to-peer networks are loosely organized networks of 

autonomous entities (user nodes or “peers”) which make their 
resources available to other peers. Since each new peer brings 
additional resources, these networks are fully scalable provided 
that the resources one offers can be found by the peers who 
need those resources. Thus, finding the desired resource is a 
critical issue in peer-to-peer networks. Keeping a centralized 
index of the resources each peer is offering is an approach that 
has scalability issues and a single point of failure. 
Alternatively, a direct approach for finding the desired resource 
is to have the peer wanting a resource to query other nodes to 
find a node that has that resource. Since a node cannot 
realistically keep the addresses of all other peers, an overlay 
network is constructed where each node keeps addresses of a 
few other peers (called its neighbors) through whom it reaches 
the rest of the peers. Peer-to-peer networks following this 
approach are referred to as unstructured peer-to-peer networks 
to distinguish them from structured networks (e.g. [6]) which 
map each unique resource to a particular node in the network, 
an approach that can be more efficient but whose lack of 
flexibility introduces other issues [5]. In this paper we focus on 
unstructured peer-to-peer networks and address two major 
concerns in these networks: the time to find a peer who is 

offering a particular resource (the search time), and the amount 
of additional traffic introduced in the network in the process of 
locating the peer that is offering that resource (the search cost). 
The reference example is of peer-to-peer file sharing networks 
and we refer to resources as files throughout the rest of the 
paper.  

As in our earlier related works [7, 8], we approximate the 
search time for a file in the network by the average number of 
hops it takes for a query to reach a node that has that file, and 
use average search time, i.e., the average time it takes to find a 
peer that is sharing the desired file, as our first metric for search 
performance. Our second metric is the search cost. Since a 
search for a file is done via peers sending query messages to 
other peers, the number of query messages each peer processes 
equals the additional traffic introduced in the network by a 
query. Therefore, we approximate the search cost by the query-
processing load, i.e., the average number of nodes that are 
queried per file request. One expects that if many peers are 
sharing a file, in any reasonable search method, the search time 
and the search cost for the file will be smaller than if very few 
peers were sharing that file. In the extreme case, if all nodes 
could store all files, no search would be required. Since each 
peer has finite storage space, a system designer seeks to get the 
optimum search performance possible given the per-node 
storage constraint. The optimal average search time, the 
optimal query-processing load and the file replica distribution 
(number of replicas of each file as a function of that file’s 
popularity) at the respective optima have been derived in [7] 
under the assumption of a uniform distribution of the file 
replicas. However, measurements on deployed peer-to-peer file 
sharing networks show a significant amount of clustering in 
interests [4], i.e., the popularity of a set of files in 
(geographical) regions differs from region to region. Further, 
more replicas of a file are found in those regions where that file 
is more popular.  

The main contributions of this paper, given in Section 5, are 
the aforementioned optimal search performance expressions for 
the clustered demands case using the network model in [8] that 
allows for incorporating clustering in demand and file replica 
distribution. Section 3 gives the network model and the search 
time results for the model from [8]. We derive the query-
processing load as a function of the file replica distribution for 
the network model in [8] in Section 4 for use in our 



optimization. Related work, including the results in [7], is 
discussed in Section 2. Our conclusions are given in Section 5.  

II. BACKGROUND AND RELATED WORK  
Flooding and random walking are the two main alternatives 

in how the search is conducted over the search network when 
no information is available about which nodes may have the 
file. In flooding, the node that wants the file sends a query to 
all its neighbors and they, in turn, forward the query to all their 
neighbors (except the one which sent the query) until a copy of 
the file is found. In random walking, the query is sent to one 
randomly selected neighbor and if that neighbor does not have 
the file, it forwards the query to one of its neighbors (selected 
randomly) other than the neighbor that sent it the query. 

When nodes are similar in capacities and file interests (i.e. 
when files and file popularities are uniformly distributed), the 
Erdos-Renyi random graph [1] is a good topology model1 for  

TABLE I.  NOTATION USED 

M Number of nodes 

L Number of clusters 

N Number of unique files 

K Per-node storage size (in number of files) 

d Average degree of the search overlay topology 

q Probability of any given pair of inter-cluster nodes having a 
direct link 

ni Number of replicas of file i in the entire network 

nia Number of replicas of file i in the “high-density” cluster 

nib Number of replicas of file i in a “low-density” cluster 

λi Request rate of file i per node (averaged over the network) 

λia Request rate of file i per node in the “high-density” cluster 

λιb Request rate of file i per node in a “low-density” cluster 

λ = 
1

N
ii

λ
=∑  

τix Average search time for file i with search method x a 

Qix Query-processing load for file i with search method x a 

τixa 
Average search time for file i from the high-density cluster 
with search method x a 

Qixa Query-processing load for file i from the high-density 
cluster with search method x a 

τixb 
Average search time for file i from a low-density cluster 
with search method x a 

Qixb Query-processing load for file i from a low-density cluster 
with search method x a 

τx
opt Optimal average search time with search method x a 

Qx
opt Optimal query-processing load with search method x a 

Qx
τopt Query-processing load with the replica distribution that 

minimizes the average search time with search method x a 
a For flooding search: x=F,  For random walk search: x=R  e.g. τiFb=Average search time for file i from a 

low-density cluster with flooding search 

                                                           
1 When node capacities are very skewed, a power-law random graph is a 

topology choice which distributes the query-processing load unevenly among 
the peers but yields faster search methods (e.g. [2]). 

TABLE II.  RESULTS FOR UNIFORM DISTRIBUTION OF REPLICAS ([7]) 

Replica 
Distribution Equation 

τiF(ni) = logd(M/ni)                                          (1) Valid for 
arbitrary 
replica 

distributions QiF(ni) = QiR(ni) = τiR(ni) = M/ni                      (2) 

1
log logopt

F

N i i
d di

Kλ λτ
λ λ=

= − −∑                      (3) 
ni ∝ λi 

QF
τopt = N

K
                                                       (4) 

ni ∝ √λi QF
opt = QR

opt = τR
opt = 

2
1

( )N
ii

K
λ

λ
=∑                (5) 

the overlay search network. The optimal search performance 
under the constraint of finite per-node storage is covered well 
by [3, 7] with the assumption of uniform distribution of file 
replicas. We summarize these results in Table 2. Table 1 gives 
the notation used in the paper. In addition to the results in 
Table 2, [7] compare random walking and controlled flooding 
at their respective optimal replica distributions and show the 
benefits that controlled flooding provides over random 
walking. In this paper, we seek to obtain results analogous to 
those in Table 2 when the file replica distribution and the 
demand patterns are not uniform. 

Since each link is equiprobable in an Erdos-Renyi random 
graph, it is not suited for modeling clustering in file interests. 
Reference [8] provides a model of peer-to-peer networks that 
allows for incorporating varying degrees of clustering in 
demand and file replica distribution and derives the search 
times for these networks. Our work in this paper uses the model 
and the search time results from [8]. We list the relevant 
material from [8] in the next section. 

III. A MODEL FOR CLUSTERED DEMANDS (FROM [8])  
Let us assume that our peer-to-peer network has M nodes 

and that these M nodes are clustered in, say, L clusters. For 
ease of discussion, we make the following assumptions. Each 
cluster is of the same size (thus, each cluster has M/L nodes). 
There are only two levels of popularity of each file and there is 
only one cluster in which a file is more popular. Thus, for all 
files i = 1 to N, file i has request rate λia per node in one cluster 
and λib per node in each of the remaining L-1 clusters where λia 

> λib and Mλi =  
L
M λia + (L-1) M

L
λib. where λi is the average  

node request rate for file i across the entire network. Let us 
further assume that the ni replicas of file i are split as nia 
replicas in the cluster where the file is more popular and nib 
replicas in each of the remaining clusters where nia>nib, ni= 
nia+(L-1)nib and nia<M/L. One may then say that the cluster 
where file i is more popular has a higher density of file i 
replicas whereas a cluster where the file is not as popular has a 
lower density. Since clustering has already been accounted for, 
we assume that within each cluster the files are uniformly 
distributed over all the nodes in that cluster.  

One possible model for the search network is to assume that 
the clusters are totally disconnected (i.e. there are no inter-
cluster links) and within each cluster, the network follows the 
Erdos-Renyi random graph topology. For this model of  



TABLE III.  SEARCH PERFORMANCE WITH DISCONNECTED CLUSTERS 

Derived 
from Equation 

τiFa(nia, nib) = logd(M/niaL)                                                      (6) 
(1) 

τiFb(nia, nib) = logd(M/nibL)                                                      (7) 

QiFa(nia, nib) = QiRa(nia, nib) = τiRa(nia, nib) = M/niaL                (8) 
(2) 

QiFb(nia, nib) = QiRb(nia, nib) = τiRb(nia, nib) = M/nibL                (9) 

clustering, the search time and the query-processing load 
expressions can be obtained from the analogous expressions for 
the uniform distribution case in Table 2 with (1) and (2) 
yielding (6), (7) and (8), (9) respectively as shown in Table 3. 

While assuming disconnected clusters makes for an easy 
first-order analysis, actual peer-to-peer networks do not 
typically have such fully disconnected clusters. There is 
evidence of strong clustering but intercluster links do exist in 
real networks so neither an Erdos-Renyi random graph over the 
entire network nor the fully disconnected clusters model is an 
appropriate topology. A topology model that gives us a 
continuum of topologies with the Erdos-Renyi random graph at 
one extreme and the fully disconnected clusters at the other 
extreme is the following random graph variant.  Consider a 
network in which the probability of including an intra-cluster 
link is p and the probability of including an inter-cluster link is 
q and the average per-node degree is d as before, i.e., assuming 
L clusters of equal sizes, the nodes are partitioned into L 
clusters and the probability that any given pair of intra-cluster 
nodes is connected is p and the probability that any given pair 
of inter- cluster nodes is connected is q. Thus, each node has an 
average of (M/L)p links to nodes within its cluster and (M-
M/L)q links to nodes outside its cluster. Hence, the average 
degree d = (M−M/L)q + (M/L)p and if one were to hold the 
average degree constant, defining one of p or q defines the 
other. Varying q provides a continuum of topologies from the 
completely disjoint clusters (q=0) to the Erdos-Renyi random 
graph (p=q). A flooding search in these topologies expands to 
d other nodes (in the higher-density or a lower-density cluster) 
in the next hop independent of whether the search process is at 
a node in the higher-density cluster or a lower-density cluster. 
Thus, the average number of nodes queried per search expands 
exponentially and the dτ expression for the number of nodes 
queried given the average search distance of τ  [7] still holds. 

Reference [8] gives analytical bounds on the search time for  

TABLE IV.  SEARCH PERFORMANCE IN THE GENERAL CASE 

Equation 
in [8] Equation 

(11) τiFa(nia, nib) ~ ( 1)( )log [ ]ia ia ib
d

n L q L n n
M d

− −− −                 (10) 

(12) τiFb(nia, nib) ~ ( )log [ ]ib ia ib
d

n L q n n
M d

−− +                           (11) 

(7) 
τiRa(nia, nib) = QiRa(nia, nib) =   

                    1( 1)( )[ ]
( / )( )

ia ia ib

ib

n L q L n n
M n L M d Mq Mq

−− −−
− +

              (12) 

(8) 
τiRb(nia, nib) = QiRb(nia, nib) = 

                    1( )[ ]
( / ( )

ib ia ib

ia

n L q n n
M n L M d Mq Mq

−−+
− +

               (13) 

flooding search in the aforementioned network model and 
indicates (via simulations and analysis) that the search time can 
be approximated well by the lower bound shown in (10) when 
searching from the high density cluster and by the upper bound 
shown in (11) when searching from the low-density clusters. 
Since the query-processing load is same as the average search 
time for random walking, we get (12) and (13) directly from 
[8]. One can verify that for disconnected clusters i.e. q=0, (10)-
(13) revert to (6)-(9) and for a uniform distribution of file 
replicas i.e. nia=nib=ni/L, (10)-(13) revert to (1) and (2). The 
query-processing loads as a function of the number of file 
replicas of each file are derived in the next section. 

IV. QUERY-PROCESSING LOAD WITH CLUSTERED DEMANDS 
As discussed earlier, for the network model described in 

Section 3, the query-processing load in the network can be 
estimated by dτ when the average search distance is τ. Hence: 

Theorem 1: The query-processing load for a flooding search 
in the clustered peer-to-peer network defined in Section 3 is  

 QiFa(nia, nib) ∼ 1( 1)( )[ ]ia ia ibn L q L n n
M d

−− −−           (14) 

for searches initiated in the high-density cluster, and is  

 QiFb(nia, nib) ∼ 1( )[ ]ib ia ibn L q n n
M d

−−+           (15) 

for searches initiated in a low-density cluster.         g 

Notice that unlike the uniform distribution case, the query-
processing load for the flooding search and the random walk 
search are different now. In fact, we can show that: 

Corollary 1: For the clustered peer-to-peer network defined in 
Section 3, (a) From the high-density cluster, a flooding search 
has a lower query-processing load than a random walk search 
whereas (b) From a low-density cluster, a flooding search has a 
higher query-processing load than a random walk search i.e. for 
searches for file i,  

QiRa(nia, nib) > QiFa(nia, nib)  

QiRb(nia, nib) < QiFb(nia, nib) 
Proof: 
Let a = niaL/M, b = nibL/M, c = q(nia−nib)/d, e = Mq/d. Then 
QiFa = [a–c(L−1)]−1, QiRa = [a–c(L−1)/[b(1−e)+e]] −1 and  QiFb = 
[b+c]−1, QiRb = [b+c(L−1)/[a(1−e)+e]] −1. Since a < 1, b < 1 and 
1−e > 0, we get b(1−e)+e < 1 and a(1−e)+e < 1. b(1−e)+e < 1 
⇒  c(L−1)/[b(1−e)+e] > c(L−1) ⇒ a–c(L−1)/[b(1−e)+e] < a–
c(L−1) ⇒ QiRa(nia, nib) > QiFa(nia, nib). Similarly, a(1−e)+e < 1 
⇒  c/[a(1−e)+e] > c ⇒ b+c/[a(1−e)+e] > b+c ⇒ QiRb(nia, nib) < 
QiFb(nia, nib).               g 

We observe that, while the request rate in the high-density 
cluster, λia, should be larger than the request rate in a low-
density cluster, λib, it is not clear whether, for arbitrary replica 
distributions, the lower query-processing load offered by a 
flooding search in the high-density cluster offsets the higher 
query-processing load incurred by the flooding search in the 



low-density cluster after weighting the query-processing costs 
by λia and λib respectively with λia > λib.  

Corollary 1 also suggests that, for arbitrary replica 
distributions, it may be better for query processing to use 
flooding searches in the high-density cluster and random walk 
searches in the low-density clusters (at the cost of significantly 
larger search times for searches from the low-density clusters) 
if it were known that the item being searched has “low-density” 
in the local cluster (a simple approach may be to use flooding 
for a short hop-limit which would allow flooding searches from 
the high-density cluster to complete and assume the incomplete 
searches to be searches in a low-density cluster).  

V. SEARCH PERFORMANCE OPTIMIZATION 
The optimal average search time τx

opt and the optimal 
query-processing load Qx

opt over all file requests in the entire 
network are: 

 τx
opt =

1

1 1(1 )
N

ia ib
ixa ixb

i L L
λ λτ τ
λ λ=

 + −  
∑  (16) 

 Qx
opt =

1

1 1(1 )
N

ia ib
ixa ixb

i

Q Q
L L

λ λ
λ λ=

 + −  
∑   (17) 

where x=F for flooding search and =R for random walk search.  

For the case of disconnected clusters, where (6)-(9) are the 
relevant expressions, the same steps as in [7] can be followed 
for the search performance optimization to yield the optimal 
results summarized in Table 5.  

The optimization procedure in the general clustering case is 
the same as in [7] but the solution is harder to obtain. We 
summarize the optimization results for flooding search in 
Theorems 3 and 4. The results for random walk search 
optimization are not provided. 

A. Average Search Time Optimization for Flooding Search 
The Lagrangian for the average search time optimization is 

H = 
1

( 1)( )1 log ( )
N

ia ia ia ib
d

i

n L q L n n
L M d

λ
λ=

− −− −
∑ + 

1

( )1(1 ) log ( ) ( [ ( 1) ] )
N

ib ib ia ib
d ia ib

i

n L q n n n L n KM
L M d

λ γ
λ =

− − + + + − −
∑  

TABLE V.  OPTIMAL SEARCH PERFORMANCE: DISCONNECTED CLUSTERS 

Optimal 
Replica 

Distribution 
Equationa 

τF
opt=

1 1

1 1log 1 log log
N N

ia ia ib ib
d d d

i i

K
L L

λ λ λ λ
λ λ λ λ= =

 − − − − 
 

∑ ∑    (18) 
{nia ∝ λia , 
  nib ∝ λib} 

QF
τopt = N

K
                                                                        (19) 

{nia ∝ √λia ,  
  nib ∝ √λib} 

QF
opt=QR

opt=τR
opt=

2

1

1 1 11
N

ia ib
iK L L

λ λ
λ =

   + −   
   

∑      (20) 

a As in [7], we still have the constraints that 1, 1, ,ia ib ia ib
M Mn n n n
L L

≥ ≥ ≤ ≤  and, hence, (18), (19) hold 

if iaL L
KM K

λ
λ

≤ ≤  and ibL L
KM K

λ
λ

≤ ≤ ∀i (see reference 4 in [7] for conditions under which (20) holds). 

Differentiating w.r.t nia and nib respectively, we obtain: 

( 1) 1[ ] (1 )1 [ ] 0( 1)( ) ( )ln

ia
ib

ia ia ib ib ia ib

L q L q
L M d L d

n L q L n n n L q n nd
M d M d

λ λ
γ

λ

−− −
− + + =− − −− +

 

( 1) 1(1 )( )1 [ ] ( 1) 0( 1)( ) ( )ln

ia
ib

ia ia ib ib ia ib

q L L q
L d L M d Ln L q L n n n L q n nd

M d M d

λ λ
γ

λ

− − −
− + + − =− − −− +

 

These equations are satisfied2 by  

 niaL/M − q(L−1)(nia−nib)/d = kλia (21) 

 nibL/M + q(nia−nib)/d =  kλib  (22) 

where k is a constant whose value is to be determined. Thus, at 
the optimal replica distribution, λi = λia/L+(1−1/L)λib= [nia/M 
−  q(1−1/L)(nia−nib)/d + (L−1)nib/M + q(1−1/L)(nia−nib)/d]/k = 

[(L−1)nib+nia]/Mk = ni/Mk, i.e. ni ∝ λi. 
1 1

N N

i i
i i

KM n Mk λ
= =

= =∑ ∑  

= Mλk ⇒ k=K/λ. The following theorem summarizes these 
results.  

Theorem 3: The average search time for a flooding search in 
the clustered peer-to-peer network defined in Section 3 is 
minimized when  

 nia= [ ( )] [ ( )]ia iKM d Mq L d Mqλ λ λ− −  (23) 

 nib=[ ( )] [ ( )]ib iKM d Mq L d Mqλ λ λ− −   (24) 

if L/KM ≤ λia/λ ≤ L/K and L/KM ≤ λib/λ ≤ L/K ∀i, and at the 
replica distribution defined by these equations, 

 ni =  Kλi/λ   

 τF
opt  =

1

1 1[ log ( ) (1 ) log ( )] log
N

ia ia ib ib
d d d

i

K
L L

λ λ λ λ
λ λ λ λ=

− + − −∑     

  QF
τopt

  = Ν/Κ    

i.e. the optimal average search time is independent of q (the 
level of clustering in search network topology) while the query-
processing load when the average search time is minimized is 
independent of the skew in file popularity and the level of 
clustering in both the search network and the file popularity. g 

B. Query-Processing Load Optimization for Flooding Search 
The Lagrangian for the query-processing load optimization 

is  H = 1

1

( 1)( )1 [ ]
N

ia ia ia ib

i

n L q L n n
L M d

λ
λ

−

=

− − −
∑  

1

1

( )1(1 ) [ ] ( [ ( 1) ] )
N

ib ib ia ib
ia ib

i

n L q n n n L n KM
L M d

λ γ
λ

−

=

− + − + + + − −
∑  

                                                           
2   1 1 1 1[ (1 )] (1 ) lnq q d

k M d L dk L
γλ− − + − =  

1 1 1(1 ) (1 )[ ] ( 1) lnq L q L d
dk L k L M d

γ λ− + − − = −  



Differentiating w.r.t nia and nib respectively, we obtain: 

2 2

( 1) 1[ ] (1 )
0( 1)( ) ( )[ ] [ ]

ia ib

ia ia ib ib ia ib

L q L q
L M d L d

n L q L n n n L q n n
M d M d

λ λ
λ λ γ

−− − − −
+ + =− − −− +

 

2 2

( 1) 1(1 )( )
( 1) 0( 1)( ) ( )[ ] [ ]

ia ib

ia ia ib ib ia ib

q L L q
L d L M d Ln L q L n n n L q n n

M d M d

λ λ
λ λ γ

−− − − −
+ + − =− − −− +

 

Comparing these equations to those yielding (21) and (22), we 
can see that these equations will be satisfied by  

 '/ ( 1)( ) /ia ia ib ian L M q L n n d k λ− − − =    (25) 

 '/ ( ) /ib ia ib ibn L M q n n d k λ+ − =       (26) 

where k’ is a constant whose value is to be determined. Thus, 
at the optimal replica distribution,  ni = nia+(L−1)nib = (M/L) 
(niaL/M−q(L−1)(nia−nib)/d + (L−1)[nibL/M+q(L−1)(nia−nib)/d]) 
= (k’M/L)[√λia+(L−1)√λib]. Using ni= (k’M/L)(√λia+(L−1)√λib) 

in 
1

N
ii

n KM
=

=∑ , we get k’ =
1

1 1[ (1 ) ]
N

ia ib
i

K
L L

λ λ
=

+ −∑  

yielding the following theorem.  

Theorem 4: The query-processing load for a flooding search 
in the clustered peer-to-peer network defined in Section 3 is 
minimized when  

 

1

( ) ( 1)

( ) [ ( 1) ]

ia ib
ia N

ia ib
i

dL Mq Mq L
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (27) 

 

1

[ ( 1)]

( ) [ ( 1) ]

ib ia
ib N

ia ib
i

dL Mq L Mq
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (28) 

assuming λia and λib are such that 1 ≤ nia ≤ M/L, 1 ≤ nib ≤ M/L 
∀i in these equations, and at this replica distribution 

QF
opt  = 

2

1

1 1 1[ (1 ) ]
N

ia ib
iK L L

λ λ
λ =

 + − 
 
∑  

i.e. the optimal query-processing load is independent of q (the 
level of clustering in search network topology).          g 

As noted in the theorems, the optimal search performance is 
independent of the level of clustering in search network 
topology. Thus, the results for the optimal search performance 
provided in Table 5 for disconnected clusters hold for the 
general clustered demands network model except for the file 
replica distributions needed for the optimal search performance 
which are now defined by (23) and (24) for the optimal average 
search time i.e. (18) and (19) and by (27) and (28) for the 
optimal query-processing load i.e. (20).  

C. Interpretation of Optimal Search Performance Results 
We find it very interesting that the optimal search 

performance does not depend on the underlying search network 

topology. In fact, it is rather intriguing that the optimal average 
search time expression for the uniform distribution case seems 
to be related to the entropy in the file request probabilities  
{λi/λ}, and that the only change in the optimal average search 
time expression in the case of clustered demands is that the 
entropy now includes the spatial distribution of file requests 
(λia/L is the probability that file i is requested by a node in the 
high-density cluster and (1−1/L)λib is the probability that file i 
is requested by a node in a low-density cluster). Similarly, the 
optimal query-processing load also changed only in that the 
expression includes the spatial distribution of file requests in 
clustered demands case. 

Another interesting observation in comparing (21), (22) and 
(25), (26) to [3, 7] is that while the expressions for the optimal 
replica distribution are complex in the case of clustered 
demands, we still have the invariant from the uniform 
distribution case that the probability of finding the file over a 
random outgoing link from a node is proportional to the file 
request rate at that node when optimizing the average search 
time and is proportional to the square-root of the file request 
rate at that node when optimizing the query-processing load. 
We summarize this result in the following theorem.   

Theorem 5: For flooding search in the clustered peer-to-peer 
network defined in Section 3, we have the following invariants 
independent of the level of clustering in demands and the level 
of clustering in the search network topology  
1) The average search time τ is minimized when pij ∝ λij, and  
2) The query-processing load Q is minimized when pij ∝ √λij  
where pij is the probability of finding file i over a random 
outgoing link from a node in cluster j and λij is the per-node 
request rate for file i in cluster j.             g 

To evaluate the potential benefits of clustering in demands over 
the uniform distribution case, we plot the interesting part3 of 
(18) and (20) in Figs. 1 and 2 respectively for a peer-to-peer 
network of 10 equal-sized clusters and 100 files with zipf- 
distributed request rates. Perfect clustering is defined as the 
case when the entire demand for a file is from its own cluster 
i.e. λib=0 and λia= Lλi. Figs. 1 and 2 clearly demonstrate the 
potential advantage of clustering. The advantage in search 
performance afforded by perfect clustering can be summarized 
the following theorem. 

Theorem 6: When the entire demand for a file is from its own 
cluster i.e. λib=0 and λia= Lλi, the optimal average search time 
τF

opt decreases by logdL and the optimal query-processing load 
QF

opt decreases by a factor of L, the number of clusters. 

Proof: 
Substituting λib=0 and λia=Lλi in (18) and (20), we get τF

opt 

=
1

log ( ) log log
N

i i
d d d

i

K Lλ λ
λ λ=

− − −∑ and QF
opt =

2

1

1 N

i
i

K
L

λ λ
=

 
 
 
∑ . 

The theorem follows on comparing these to (3), (5).           g  
                                                           

3 To eliminate the dependence on d and K, in Figs. 1 and 2, we plot τopt’ = 

1

1 1[ ln( ) (1 ) ln( )]
N

ia ia ib ib

i L L
λ λ λ λ
λ λ λ λ=

− + −∑  and Qopt’ = 
2

1

1 1[ (1 ) ]
N

ia ib

i L L
λ λ
λ λ=

 
+ −  

 
∑  

instead of (18) and (20) respectively. 
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Figure 1.  Benefit of Clustered Demands: Optimal Search Time 
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Figure 2.  Benefit of Clustered Demands: Optimal Query-Processing Load 

Finally, we note that the penalty over the optimal query-
processing load incurred upon optimizing the average search 
time increases in the case of clustered demands. For example, 
for the peer-to-peer network shown in Fig. 2, QF

τopt = 100 
independent of the fraction of traffic inside the cluster while 
QF

opt ~50 in the uniform distribution case but goes down to 
~8.5 when 99% of the file requests are from inside the cluster. 

All of the above discussion assumes that the optimal replica 
distribution can be achieved. In the uniform distribution case, 
LRU storage management gave near-optimal replica 
distribution [10] but for the clustered demands case, as we can 
see in (21) and (22) for the optimal average search time and 
(23) and (24) for the optimal query-processing load, the 
desired replica distribution depends on the degree of clustering 
in the underlying search network topology. However, rather 
than being a hindrance, this dependence of the optimal replica 
distribution on the underlying search network topology offers 
us a very powerful tool to achieve the optimal search 
performance. In a preliminary study, we were able to achieve 
the optimal query-processing performance with LRU storage 
management algorithm by tuning the underlying search 
network topology. This suggests that it may be possible to 
achieve the optimal replica distribution with any local storage 
management algorithm by appropriately tuning the underlying 
topology. If this approach of tuning the search network 
topology to reach the optimal replica distribution works in 
most cases, we may be able to obtain the optimal download 

performance [9, 10] (by using an LRU-like approach that 
populates file replicas in near-linear proportionality to the file 
request rates) and, at the same time, obtain the optimal query-
processing load as well by tuning the underlying search 
network topology appropriately.  

VI. CONCLUSION 
In this paper, we derived results on optimal search time and 

optimal search cost in an unstructured peer-to-peer network 
when the demand exhibits clustering. The previous work in this 
area assumed uniformity in replica and demand distribution. 
Since real networks show clustering in demands, our results 
provide a more accurate estimate of the search performance 
achievable in unstructured peer-to-peer networks. Interestingly, 
we found that the gains in the optimal search performance 
afforded by clustering in demand patterns are independent of 
whether the search network topology matches the clustering in 
file popularity. The optimal replica distribution, however, does 
depend on clustering in the search network topology. Since the 
replica distribution is driven by peer requests, we believe that 
tuning the search network topology to match the replica 
distribution generated by peer requests is more practical than 
matching the replica distribution to the topology. In our 
simulations, we were able to operate a peer-to-peer network at 
the optimal search cost by tuning the clustering in the search 
network topology depending on the clustering in demands 
while using LRU cache management at each peer. In the 
process of deriving the optimal search performance results, we 
derived the relation between the query-processing load and the 
number of replicas of each file for the clustered demands case 
showing that flooding searches may have a lower query-
processing load than random walk searches in the clustered 
demands case. 
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