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Abstract— Search time as a function of the number of replicas of 
a queried object provides a key component to understanding 
system behavior in peer-to-peer networks. The analytical work in 
this area so far has assumed a uniform distribution of file replicas 
throughout the network with an implicit or explicit assumption of 
uniform file popularity distribution whereas, in reality, there is 
clear evidence of clustering in file popularity patterns. In this 
paper, we provide mechanisms for modeling clustering in file 
popularity distributions and the consequent non-uniform 
distribution of file replicas. We provide results for the search 
time in such networks for both random walk and flooding search 
mechanisms.  

Keywords- Flooding, Peer-to-Peer Networks, Random Walk, 
Search Time 

I.  INTRODUCTION 
Peer-to-peer networks offer the promise of systems that 

automatically scale in capacity as the number of users increases 
and yet are extremely robust, automatically adapting to failures 
of nodes/links as well as to changes in usage patterns, all at 
virtually no cost. These loosely organized networks of 
autonomous entities (user nodes or “peers”), which make their 
resources available to other peers, represent a new computing 
paradigm where the service consumers are, now, the service 
providers as well. So, for example in peer-to-peer file sharing 
networks, users share files and if one wants to download a file 
and another user is sharing that file, one would download it 
directly from that user. Upon obtaining the desired file, one 
may also begin to share that file allowing other users to 
download from them. Thus, a file is likely to have multiple 
replicas in the network with the more popular files having more 
replicas (i.e. more sources to download the file from). The 
replication of files provides the robustness while its correlation 
with popularity provides the automatic scaling according to 
usage patterns.  

This flexibility, however, comes at a cost: one has to find a 
peer who is sharing the desired file. For a user of a peer-to-peer 
content distribution system, the measure of system 
performance is the time it takes to fulfill a request for a 
particular file which now consists of two components: the time 
it takes to find who has that content, and the time to actually 
download the content. The download component of the 
performance, especially as related to the number of replicas of 

each file, has been well addressed in [15]. In this paper, we 
address the average search time, i.e., the average time it takes 
to find a peer that is sharing the desired file, and explore the 
relation between the search time for a file and the number of 
replicas of that file (henceforth in this paper, when we say 
“search time” we mean “average search time”).  

Some work has been done in this area assuming a uniform 
distribution of file replicas. These results are discussed in the 
next section. Measurements on the deployed peer-to-peer file 
sharing networks [8] show that there is significant amount of 
clustering in interests, i.e., the popularity of a set of files in 
(geographical) regions differs from region to region. Further, 
most replicas of a file are found in the region where that file is 
popular. Our first contribution in this paper is a model of peer-
to-peer networks that allows for incorporating varying degrees 
of clustering while retaining a fair amount of analytical 
tractability. This model is discussed in Section 3. Our second 
contribution, given in Sections 4 and 5, is the search time with 
random walk search and with flooding search in peer-to-peer 
networks with clustering. 

II. BACKGROUND AND RELATED WORK  
As discussed, the time to find which peer has the desired 

file is a key performance metric. Hence, the search mechanism 
to find the desired file in the network has received a lot of 
attention. One approach is to have a centralized index of the 
files each peer is sharing where one could just look up which 
peer has the desired file. However, this introduces a single 
point of failure and congestion in the system. Another approach 
is to treat each peer as providing a certain amount of storage to 
the system and have a one-to-one mapping of the object to be 
stored in the system and nodes in the system. In this class of 
networks, called structured networks, the nodeId where the 
desired object is stored (if it was in the network) can be 
computed so one does not need to “search” for files (finding 
the node associated with that nodeId still incurs a delay) [10, 
13]. Most of the deployed peer-to-peer applications, however, 
use yet another approach where the nodes have control over the 
files they share and to obtain the desired file, a peer must query 
other nodes to find a node that is sharing the desired file1. It is 

                                                           
1 To make the search more efficient, a common variation is to have a 

“superpeer” keep a list of files shared by 50-100 other “peers”. 



these unstructured peer-to-peer networks that we focus on in 
this paper.  

Since a node cannot realistically keep the addresses of all 
other peers, each node keeps addresses of a few other peers 
(called its neighbors) through which it reaches the rest of the 
nodes. That is, an overlay network is constructed to accomplish 
search tasks. The topology of this search network depends on 
the peer-to-peer protocol and the typical model used for these 
networks is the Erdos-Renyi random graph [2] (a power-law 
random graph is another choice but it distributes the query-
processing load unevenly among the peers while yielding faster 
search methods [4, 12]). The Erdos-Renyi random graph is a 
good choice when nodes are similar in capacities and file 
interests (i.e. when files and file popularities are uniformly 
distributed). We choose this model for our work herein.  

A second major design choice is in how the search is 
conducted over this search network when no information is 
available about which nodes may have the file. The two main 
approaches are flooding and random walking. In flooding, the 
node that wants the file sends a query to all its neighbors and 
they, in turn, forward the query to all their neighbors (except 
the one which sent the query) until a copy of the file is found. 
In random walking, the query is sent to one randomly selected 
neighbor and if that neighbor does not have the file, it forwards 
the query to one of its neighbors (selected randomly) other than 
the neighbor that sent it the query. Thus, the number of nodes 
queried with each additional hop grows exponentially in 
flooding leading to lower search time than random walk where 
this growth is linear [14].  

The two main works on search times are [5, 14]. Both 
approximate the search time for a file in the network by the 
average number of hops it takes for a query to reach a node that 
has the file and we will also use the same approximation for the 
search time in this paper.  

Reference [5] gives the search time for a file as a function 
of number of replicas of the file when the search method is a 
random walk. Say there are ni copies of file i in the network 
and a total of M nodes in the network. If these ni copies are 
uniformly distributed in the network (at most one copy to a 
node), a randomly selected node has a probability ni/M of 
having the file. Thus, random walking for file i is a sequence of 
Bernoulli trials with ni/M as the probability of success. Hence 
the (average) search time for file i with random walk τiR is:  

 τiR(ni) = M/ni (1) 

Reference [14] provides analogous results for flooding and 
then goes on to compare flooding and random walking and 
shows the benefits controlled flooding provides over random 
walking. It gives the flooding search time under the uniform 
distribution assumption to be:  

 τiF(ni) = logd(M/ni) (2) 

where τiF is the (average) search time for file i with flooding, d 
is the average degree (i.e. the average number of neighbors of 
each node) of the search network with ni and M as defined 
earlier. Intuitively one can interpret this result as follows. A 

search for file i needs to query M/ni nodes on average to find 
the file. Since a random walk queries one additional node per 
hop, it takes M/ni rounds to find the file while flooding can 
query that many nodes in just logd(M/ni) hops because it 
queries exponentially more nodes with each additional hop2.   

There is considerable work on peer-to-peer networks but 
due to space constraints we will only mention some of the 
search-related work here. Reference [1] gives analytical results 
on search time but when there is only one copy of each object. 
Flooding search is also analyzed by [17] but they focus on node 
reachability in hop-limited flooding. Simulation results in [11] 
also show the logarithmic relationship between search time and 
number of replicas (as we show in [14]). Our work in this paper 
gives analytical support to the proposal in [3] of constructing 
networks with clustering to improve the search process. Our 
analysis complements work in [9] which uses replication 
(query result caching) to improve search (the metric is query hit 
rate in hop-limited flooding search). Random walk search has 
been studied by many others (e.g. [4], [7], [12]) but the 
network model and/or the metrics of interest were different. 

III. NETWORK MODEL  
As discussed above, we already have the search time 

expressions for both random walk and flooding searches if the 
file distribution is uniform. Our task in this paper is to 
investigate the effect clustering has on search times. As 
mentioned, measurements on real systems indicate that most 
replicas of a file are located in the regions where the file is 
more popular. Therefore, intuitively one would expect that 
average search times should be shorter in the presence of 
clustering (there are more replicas nearby in regions where 
most requests for that file are made).  

Let us assume that our peer-to-peer network has M nodes 
and that these M nodes are clustered in, say, L clusters. For 
ease of discussion, we make the following assumptions. Each 
cluster is of the same size (thus, each cluster has M/L nodes). 
There are only two levels of popularity of each file and there is 
only one cluster where a file is more popular. We assume that 
the cluster where a file is more popular will have more copies 
of that file i.e. if the ni copies of file i are split as nia in the 
cluster where the file is popular and nib in each of the remaining 
clusters, where ni=nia+(L-1)nib, nia<M/L and nia> nib. One may 
then say that the cluster where file i is more popular has a 
higher density of file i whereas a cluster where the file is not as 
popular has a lower density. Since clustering has already been 
accounted for, we assume that within each cluster the files are 
uniformly distributed over all the nodes in the cluster.  

One possible model for the search network is to assume that 
the clusters are totally disconnected (i.e. there are no inter-
cluster links) and within each cluster, the network follows the 
Erdos-Renyi random graph topology. For this model of  

                                                           
2 Since a node does not forward a query twice, the exponential growth 

assumption is optimistic. Thus, (2) slightly underestimates the actual search 
time. In [16], we provide simulation plots for the average search distance for 
different topologies as well as an analytical proof for (2) when M→∞ and ni/M 
is small. Our work in [16] indicates that (2) is an approximate expression for 
the search time which captures the dependence of search time on the number 
of replicas very well while underestimating the search time by a small amount. 
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Figure 1.  Search Time with Perfect Clustering (25,000 node network, 5 

equal-sized clusters, Average Degree 5) 

clustering, the search time expressions can be obtained from 
our earlier results [14] for the uniform file distribution case. 
Specifically, the search time for flooding when a node in the 
high density cluster initiates the search, τiFa, is:   

 τiFa(nia, nib) = logd(M/niaL) (3) 

while the search time for flooding when a node in the low 
density cluster initiates the search, τiFb, is:   

 τiFb(nia, nib) = logd(M/nibL) (4) 

Similarly, the search time for a random walk when a node 
in the high density cluster initiates the search, τiRa, is:   

 τiRa(nia, nib) = M/(niaL) (5) 

whereas the search time for a random walk when a node in the 
low density cluster initiates the search, τiRb, is:   

 τiRb(nia, nib) = M/(nibL) (6) 

Comparing (3)-(6) to (1), (2) we see that perfect clustering 
reduces the random walk search time (and the query-processing 
load for both flooding and random walk [14]) by a factor of L 
while the flooding search time decreases by logdL. Fig. 1, 
where we compare simulation results with (3), shows that (3) 
captures the effect of the number of replicas very well (since 
(3) is based on (2), the slight underestimation by (3) is 
expected).  

While assuming disconnected clusters makes for an easy 
first-order analysis, actual peer-to-peer networks do not have 
such fully disconnected clusters. There is evidence of strong 
clustering but intercluster links do exist in real networks so 
neither an Erdos-Renyi random graph over the entire network 
nor the fully disconnected clusters model is an appropriate 
topology. Therefore we must define a new kind of topology 
that is an intermediate between these two extremes. Ideally, we 
would like to define a continuum of topologies with the Erdos-
Renyi random graph at one extreme and the fully disconnected 
clusters at the other extreme. One such topology is the 
following random graph variant.  Consider a network in which 
the probability of including an intra-cluster link is p and the 
probability of including an inter-cluster link is q and the  

TABLE I.  NOTATIONS USED 

M Number of nodes 

L Number of clusters 

d Average degree of the search overlay topology 

q Probability of any given pair of inter-cluster nodes having a 
direct link 

ni Number of replicas of file i in the entire network 

nia Number of replicas of file i in the “high-density” cluster 

nib Number of replicas of file i in the “low-density” cluster 

τiR Average search time for file i with random walk search 

τiF Average search time for file i with flooding search 

τiRa 
Average search time for file i from high-density cluster 
with random walk search 

τiRb 
Average search time for file i from low-density cluster with 
random walk search 

τiFa 
Average search time for file i from high-density cluster 
with flooding search 

τiFb 
Average search time for file i from low-density cluster with 
flooding search 

average per-node degree is d as before i.e. assuming L clusters 
of equal sizes, the nodes are partitioned into L clusters and the 
probability that any given pair of intra-cluster nodes is 
connected is p and the probability that any given pair of inter-
cluster nodes are connected is q. Thus, each node has an 
average of (M/L)p links to nodes within its cluster and (M-
M/L)q links to nodes outside its cluster. Hence, the average 
degree d = (M−M/L)q + (M/L)p and if one were to hold the 
average degree constant, defining one of p or q defines the 
other. Notice that this topology does provide the desired 
continuum of topologies from the completely disjoint clusters 
(with q=0) at one extreme and the random graph (p=q) at the 
other. A side benefit for flooding search is that it does not 
matter whether a search process is at a node in the higher-
density cluster or the lower-density cluster, it will expand to d 
other nodes in higher or lower-density clusters in the next hop. 
Thus, the average number of nodes queried per search expands 
exponentially and the dτ expression for number of nodes 
queried given the average search distance of τ  [14] still holds.   

We summarize the notation used in this paper in Table 1. 

IV. RANDOM WALK SEARCH IN NETWORKS WITH 
CLUSTERING 

In the case of no clustering and the case of disconnected 
clusters we discussed so far, a search only queried nodes of the 
“same type” (i.e. all the nodes queried by the search had the 
same probability of having the desired file). However, this is 
not the case in the clustered peer-to-peer network as the 
existence of inter-cluster links implies that a query can get 
forwarded to a node in a different cluster where the probability 
of a node having the file may be different. Thus, in our model, 
when a query is forwarded, the event of interest is whether it 
goes to a node in the high-density cluster or to a node in one of 
the low-density clusters. Among the d outgoing links at each 
node, the probability that a link is an inter-cluster link is q(M-
M/L)/d. Therefore, for a query at a node in the higher-density 
cluster, the probability of one query path “escaping” to a lower-  
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Figure 2.  Random walk in the modified random graph for the non-uniform 
file distribution case  

density cluster is c = q(M-M/L)/d.   In contrast, when the query 
is at a node in the lower-density cluster, the probability of 
escaping to the higher density cluster is e = q(M/L)/d as there 
are only M/L nodes that are of interest for this event. For ease 
of discussion, throughout the rest of the paper, we refer to the 
nodes within the higher-density cluster as “good” nodes, and 
the nodes in the lower-density clusters as “bad” nodes.  

Fig. 2a shows a Markov chain model for the random walk 
on our modified random graph with a non-uniform file 
distribution prior to finding the file: state G represents the 
random walk being at a “good” node and state B represents the 
random walk being at a “bad” node. The random walk 
transitions between state G and state B until it finds the file. 
The probability of finding the file when the system transitions 
to state G (i.e. at a good node) is a = niaL/M, and the 
probability of finding the file when the system transitions to 
state B (i.e. at a bad node) is b = nibL /M. Since we need to 
determine the average number of steps until the file is found for 
the random walk search time, we transform our Markov chain 
in Fig. 2a to that in Fig. 2b. The state NG denotes the event that 
the search visits a good node but does not find the file and the 
state NB denotes the event that the search visits a bad node but 
does not find the file. State F is an absorbing state denoting the 
event that the file is found independent of whether the previous 
node is good or bad. Thus, the average first passage time from 
state NG to state F is the search time for a random walk search 
initiated by a good node, τiRa, and the average first passage time 
from state NB to state F is the search time for a random walk 
search initiated by a bad node, τiRa. 

The relevant equations [6], therefore, are:   

 τiRa = 1+ (1-c)(1-a)τiRa + c(1-b)τiRb  

 τiRb = 1+ e(1-a)τiRa + (1-e)(1-b)τiRb  

Therefore: 

τiRa =
( )(1 )

(1 ) (1 )
c e b b

ab cb a ae b
+ − +

+ − + −
= 1]

)()1(
)([ −

++−−
−−

ececb
baca    

 τiRb=
( )(1 )

(1 ) (1 )
c e a a

ab cb a ae b
+ − +

+ − + −
= 1]

)()1(
)([ −

++−−
−+

ececa
baeb   

Substituting the values for a, b, c and e, we get the 
following theorem:  

Theorem 1. The (average) search time for a random walk 
search in the clustered peer-to-peer network defined in Section 
3 is:   

 τiRa (nia, nib) = 1]
))(/(

))(1(
[ −

+−
−−

−
MqMqdMLn

nnLq
M

Ln

ib

ibiaia     (7) 

if the search is initiated at a node in the high-density cluster, 
and is:   

 τiRb(nia, nib) = 1]
)(/(
)(

[ −

+−
−

+
MqMqdMLn

nnq
M

Ln

ia

ibiaib  (8) 

if the search is initiated at a node in the low-density cluster.   g 

Comparing (7), (8) with (5), (6) respectively, we see that 
the search time for a query initiated by a good node increases if 
cross-cluster links are present but if a bad node initiated the 
query, the search time decreases. As expected, if there were no 
cross-cluster links (i.e. q=0), (7), (8) revert to (5), (6) 
respectively. Further, in the uniform distribution case, nia = nib 
= ni/L and (7) and (8) revert to (2) as expected.   

V. FLOODING SEARCH IN NETWORKS WITH CLUSTERING 
Unlike the case of no clustering where we found in Section 

2 that the flooding search time is the logarithm of the random 
walk search time, in networks with clustering the mapping 
between flooding and random walk is not straightforward. 
Clustering implies more intra-cluster links than inter-cluster 
links. Therefore, if a query gets to a good node, it is more likely 
to have come from a good node than a bad node i.e. P(G|G) > 
P(G|B) or 1-c > e. Similarly, a query getting to a bad node is 
more likely to have come from a bad node than from a good 
node i.e. P(B|B) > P(B|G) or 1-e > c. Thus, searching from a 
good node, flooding is likely to see more good nodes than a 
random walk upon querying the same number of nodes3, and 
searching from a bad node, flooding is likely to see more bad 
nodes than a random walk upon querying the same number of 
nodes4. Thus, a flooding search initiated by a good node is 

                                                           
3 For example, say, the average degree is 3 and let us compare the average 

number of good nodes among the next 3 nodes queried by a good node. The 
average number of good nodes with flooding, nF = 3(1−c)3 + 2[3(1−c)2c] + 
[3c2(1−c)].  The average number of good nodes with random walk, nR = 
3(1−c)3 + 2[2ce(1−c)+c(1−c)2] + [(1−c)c(1−e)+c(1−e)e+c2e]. Thus, nF − nR = 
4[(1−c)2c− ce(1−c)] + [3c2(1−c)− (1-c)c(1−e)− c(1−e)e−c2e] = c(c2–
4c+3+2ce–4e+e2) = c[(1−c)2+2(1-c)(1−e)+(1-e)2−1]=c[(2–c–e)2–1]=c(1–c–
e)(3–c–e) > 0 since 1−c > e. 

4 Using the example of average degree 3 again, we compare the average 
number of bad nodes among the next 3 nodes queried by a bad node. The 
average number of bad nodes with flooding, nF = 3(1−e)3 + 2[3(1−e)2e] + 
[3e2(1−e)].  The average number of bad nodes with random walk, nR = 
3(1−e)3 + 2[2ce(1−e)+e(1−e)2] + [(1−c)e(1−e)+c(1−c)e+e2c]. Thus, nF − nR = 
e(1–c–e)(3–c–e) > 0 since 1−e > c.   



likely to query more good nodes in logdN steps than a random 
walk search would in N steps starting at the same node. Hence,   

 τiFa(nia, nib) < logd[τiRa(nia, nib)] (9) 

Similarly, a flooding search initiated by a bad node will query 
more bad nodes in logdN steps than a random walk search will 
in N steps starting at the same node and hence   

 τiFb(nia, nib) > logd[τiRb(nia, nib)] (10) 

Thus, in networks with clustering, the random walk search 
times only provide us with bounds5 on one side for the flooding 
search times. These bounds, however, are useful since getting 
an exact expression for the average search time is very 
difficult. The best we can do is to bound the search time on the 
other side as well.  

Let us first attempt to obtain a lower bound on the flooding 
search time for a search initiated at a good node. The difficulty 
in getting an exact expression is that at hop distance > 1, the 
query could be at bad nodes as well as good nodes and 
computing the relative distribution of these nodes is hard. Since 
we want a lower bound, a crude approach is to ignore all the 
“bad” possibilities and assume that even after hop distance > 1, 
the nodes that are forwarding the queries are all good nodes. 
With this assumption, at any hop distance ≥ 1, when a node 
queries one of its neighbors, the probability that the file is 
found is P(F|NG).  Hence, the search time for a flooding search 
from a good node is no better than −logd[P(F|NG)] = 
logd[(1−c)a+cb] = −logd[a–c(a-b)]. Thus6,    

 τiFa(nia, nib) > − ( 1)( )log [ ]ia ia ib
d

n L q L n n
M d

− −−  (11) 

We can use the same approach to find an upper bound for 
τiFb, the search time for a flooding search initiated at a bad 
node. We can ignore all the “good” possibilities and assume 
that even after hop distance > 1, the nodes forwarding the 
queries are all bad nodes. With this assumption, at any hop 
distance ≥ 0, when a node queries one of its neighbors, the 
probability that the file is found is P(F|NB). Hence, the search 
time for a flooding search from a bad node is no worse than 
−logd[P(F|NB)] = −logd[(1−e)b+ea] = −logd[b+e(a-b)]. Thus,    

 τiFb(nia, nib) < − ( )log [ ]ib ia ib
d

n L q n n
M d

−+  (12) 

Combining (9, 10, 11, 12), we get the following theorem:  
                                                           

5 The bounds presented in this section are approximate bounds as the 
underlying analytical approach (Section 2) underestimates the search time by 
a small amount (see Fig. 1). Thus, the actual search times should lie within the 
given bounds plus a small offset. 

6 Since the probability of finding the file at hop distance 0 is P(F) whereas 
the expression −logd[P(F|NG)] assumes P(F|NG) to be the probability at all 
hop distances including 0 [16], a correction factor of  −[1−P(F)]/[1−P(F|NG)]  
is required. Since this correction factor is negligible when the probability that 
the querying node itself has the file is small, we omit this from (11). A similar 
correction factor applies in the case of a flooding search from a “bad” node 
but its magnitude is even smaller and hence we omit it from (12) as well. 

Theorem 2. The search time for a flooding search in the 
clustered peer-to-peer network defined in Section 3 is 
approximately5,6 bounded by     

 − ( 1)( )log [ ]ia ia ib
d

n L q L n n
M d

− −−    <   τiFa(nia, nib)  

 <   −logd
( 1)( )[ ]

( / )( )
ia ia ib

ib

n L q L n n
M n L M d Mq Mq

− −−
− +

 (13) 

if the search is initiated at a node in the high-density cluster, 
and is approximately5,6 bounded by    

 −logd
( )[ ]

( / )( )
ib ia ib

ia

n L q n n
M n L M d Mq Mq

−+
− +

   <   τiFb(nia, nib)   

 <   − ( )log [ ]ib ia ib
d

n L q n n
M d

−+  (14) 

if the search is initiated at a node in the low-density cluster.  g 
 

Comparing (13), (14) to (3), (4) respectively, we see that 
the presence of cross-cluster links increases the search time for 
a query initiated by a good node and decreases the average 
search time for a query initiated by a bad node. Since the lower 
and upper bounds differ only in the denominator of the term 
incorporating the effect of clustering, the bounds will be tight 
unless (1-x)(d-Mq) is large where x=nibL/M for (13) and 
x=niaL/M for (14) or, in other words, when nib or nia are very 
small or q is small (in which case (11), (12) provide a good 
approximation). We also see that the bounds become equal in 3 
cases: when q=0, when nia= nib, and when d−Mq=0. q=0 
implies the clusters are disjoint so we revert to (3) and (4) as 
expected. The other two cases have important implications. 
When, nia= nib = ni/L (i.e. the file distribution is uniform) both 
bounds again become equal to (1). However, (1) was under the 
assumption of an Erdos-Renyi random graph search network 
whereas our network can have an arbitrary degree of clustering. 
In the d=Mq case also, the bounds become equal and we revert 
to (1) even though our file distribution has clustering but the 
search network is an Erdos-Renyi graph as assumed for (1).   

In Fig. 3 we compare the bounds in (13), (14) to simulation 
results under varying degrees of clustering in inter-cluster link 
probability and the ratio of replica density in the high-density 
cluster to that in the low-density cluster. As expected we find 
that the bounds are tight under moderate clustering (Fig. 3a) 
and as clustering becomes stronger (Fig. 3b,c) the bounds start 
to separate but the search time gets closer to (11), (12). Thus, in 
either case we have a good estimation of the average search 
time. Finally, we also note that the search time slightly exceeds 
the approximate upper bound is as expected5.  

VI. CONCLUSION 
In this paper, we investigated the relationship between the 

number of replicas of a file in unstructured peer-to-peer 
networks and the search time for that file and substantially 
expanded the existing knowledge on this topic. We provided a 
model to incorporate clustering in peer-to-peer network models 
so they better reflect real networks. We were able to find an



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

(a) 70% links intra-cluster, Replicas-in-low density  
  cluster = 0.1*Replicas-in-high-density-cluster 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 70% links intra-cluster, Replicas-in-low density  
    cluster = 0.01*Replicas-in-high-density-cluster 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 90% links intra-cluster, Replicas-in-low density  
    cluster = 0.01*Replicas-in-high-density-cluster

Figure 3.  Flooding Search Time Simulation vs. Bounds (25,000 node network, 5 equal-sized clusters, Average Degree 5, Varying Degree of Clustering) 

exact expression for the random walk search time in a peer-to-
peer network with clustering. We were also able to find bounds 
on the flooding search time in these networks. Using these 
bounds, we extend the previously known results for flooding 
search time which assumed a uniform file distribution and an 
Erdos-Renyi random graph to when the file distribution is not 
uniform but the search network is an Erdos-Renyi random 
graph, and when the file distribution is uniform but the search 
network has clustering. Even though there is still room for 
improvement in our results, they provide the peer-to-peer 
system designers a valuable set of tools to make informed 
design choices on questions such as how many replicas they 
would like to have for a file, or the TTL hop limit to set for 
TTL-scoped flooding searches.  
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