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ABSTRACT

Time-shared computer (or processing) facilities are treated as stochastic queueing systems under priority
service disciplines and the performance measure of these systems is taken to be the average time spent in the system.
Results are presented for models in which time-shared computer usage is obtained by giving each request a fixed
quantum, Q, of time on the processor, after which the request is placed at the end of a queue of other requests; the
queue of requests is constantly cycled, giving each user Q sec on the machine per cycle. Results for the case for
which Q> 0 (a processor-shared model) are then present%g. A general time-shared facility is then considered in
which priority groups are introduced. Specifically, the p~ priority group is given gpQ seconds in the processor each
time around. Letting Q ~ 0 we then get results for priority processor-shared system. These disciplines are com-

pared to the first come first served disciplines.

The systems considered provide the two basic features desired in

any time-shared system, namely, rapid service for short jobs, and the virtual appearance of a (fractional capacity)

processor available on a full-time basis.

No charge is made for swap time, thus providing results for "ideal" systems. The results hold only for
Poisson arrivals and geometric (or exponential) service time distributions.

I INTRODUCTION

Interest in time-shared computing systems has been
growing at an increasing rate in recent years. A number of
such systems have been cropping up in various places
throughout the country (see References [1]-[5]). The moti-
vation for such interest is toward encouraging the inter-
action between the user (programmer) and the computer it-
self. Furthermore, it is recognized that the availability of
computers must be increased so rapidly that we may soon
find it expedient to offer computational and processing ca-
pacity as a "public utility.'" A natural way to do this is to
provide the public with access to computers on a time-
shared basis (not unlike the telephone company's use of
graded trunk lines), thus providing a high efficiency for the
user as well as for the computer facility,

Time-shared systems are often designed with the in-
tent of appearing to a user as his personal processor
(where, ideally, he is unaware of the presence of any other
users)., Of course, no such ideal system can guarantee a
full-capacity full-time machine to any user (in the time-
shared mode), but rather, they offer a fractional-capacity
"full-time'" machine to each user. In the ideal case, at any
time, the fraction of the total capacity offered to any user
will just bel the inverse of the number of users currently
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This is generalized in our priority meodel described in
Section II.

requesting service (i.e., we assume an harmonic variation
of individual capacity with number of users).

Unfortunately, very little work has been carried out
in analyzing the behavior of time-shared systems from a
mathematical viewpoint. In this paper we proceed in that
direction.

In Section II, we define three models of time-shared
systems.

II QUEUEING MODELS OF TIME -SHARED
FACILITIES

The Round-Robin Model

Our point of departure is the discrete time model of
a time-shared processor studied by Kleinrock [6]. In this
model, it is assumed that time is quantized with segments
each Q seconds in length. At the end of each time interval,
a new unit (or job) arrives in the system with probability
AQ (result of a Bernoulli trial); thus, the average number
of arrivals per second is A, The service time (i.e., the
required processing time) of a newly arriving unit is
chosen independently from a geometric distribution such
that for 0=0<1

s,= (1—«.7)0n_1 1% 2 e I L e (1)

where s_ is the probability that a unit's service time is
exactly T time intervals long (i.e., that its service time is
nQ seconds).



The proccdure for servicing is as follows: a newly
arriving unit joins the end of the queue, and waits in line
in a first-come first-served fashion until it finally arrives
at the service facility, The server picks the next unit in
the queue, and performs one unit of service upon it (i.e.,
it services this job for exactly Q seconds). At the end of
this time interval, the unit leaves the system if its service
(processing) is finished; if not, it joins the end of the queue
with its service partially completed, as shown in Figure 1.
Obviously, a unit whose processing requirement is nQ time
units long will be forced to join the queue n times in all
before its service is completed.

It we assume zero swap-time, we may consider the
case of a round-robin system in which Q = 0. We must be
careful in taking this limit since the service time, nQ also
voes to zero in this case and our model loses all meaning.
Consequently, let us agree to keep the average service
time constant as Q -~ 0. This involves changing o, the
decay rate in Equation (1) such that o = 1 as Q = 0.
Specifically, we have that

\? 1_
n_=ll
and, defining

1 "
- r average service requirement (in seconds)

uC
we get
R P =
iF i constant as Q=+ 0 and o~ 1
or
c=1-uCQ (2)
Thus, the limiting operation we consider is where Q-0

and 0 = 1 in the manner expressed in Equation (2), The re-
sult of this limit is that the required service £, (in oper-
ations) is exponentially distributed with parameter u, viz.,

o(l) = e b (3)

where £ is the length of the job.

We have chosen to assume that the length £ of a job
is given in number of operations instead of in seconds, thus
naking the user requirement independent of the machine on
which it is serviced. We then define, for any processor, a
quantity

C = capacity of a processor in operations (say
additions) per second.

The service time for a job then becomes £/C seconds, with
2 mean service time of 1/uC seconds.

The arrival mechanism in the limit then becomes
Poisson with an average arrival rate of A customers per
second. This model reduces to a system in which a user
is processed at a rate C/k operations per second when
there are k users sharing a computer of capacity C. This
processing rate varies as new users enter and old ones
leave the system. We are here assuming an harmonic
variation of individual processing rate with number of

customers, See Figure 2,

The Priority Processor-Shared Model

This is a generalization of the processor-shared
system considered above. Here, we assume that the input
traffic is broken up into P separate priority groups, where
pth group has a Bernoulll arrival pattern at an average
rate of hp customers per second and a geometrically
distributed service requirement whose mean is 1/(1-op)
operations., For the Q -~ 0 case, we give a member of the
pth priority group g,Q seconds of service each time he
cycles around the queue (see Figure 3).

For @ = 0 (holding fixed llu C = Q/(1-0,) this model
then reduces to a proceasor-shared model witg a priority
structure wherein a member from group p receives at time

t a fraction fp, where
g
. - -
fp i’ (4)
g.n
i=1 11

of the total processing capacity C (here n; is the number of
customers from priority group i present in the system at
time t), We note that we then have, for the p th group,
Poisson arrivals (A, per second) and exponential service
with an average of '1/u,C seconds. The non-priority pro-
cessor-shared model considered earlier is the special case
ip = 1-for all p.

The interest of this model is to give preferential
service to certain of the groups of users, where, for con-
venience, we may consider that the higher the value of p,
the higher is considered the priority of that group. In such
a case, we may assume that g, is a monotonically in-
creasing function of p (although we do not need this for the
subsequent development).

In Figure 4 we show a diagram of the priority pro-
cessor-shared system.

We observe that the two processor-shared models are
ideal in the sense that swap-time is assumed to be zero and
in that customers are given immediate use of the processor
(albeit only a fractional capacity pr).

111 RESULTS FOR TIME-SHARED SYSTEMSJr

The Round-Robin System

This system has already been studied (see [6]). We
present the results of that analysis here.

THEOREM 1: The expected value, Ty, of the total
time.‘t spent in the round-robin system for a job whose
service time is nQ seconds, is

(1- aa)(l i

1-ok- -p)

T -9 e
= = 1
n 1-p 1-p

(5)

where

a=0+AQ (6)
7

Proofs for Theorems 1 and 2 may be found in Reference

[6]. Proofs for the remaining theorems will be published
shortly by the author.

IT is the sum of the time spent in the queue and the time
spent in the service facility.
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p = i (7)

Wurthermore, the expected number, Ep, of customers in
the system is given by

a
E_ -2 (8)

©

—

THEOREM 2: The expected value, T;l , of the total
time spent in the strict first-come first-served system
for a unit whose service time is nQ seconds is

QE

! X

= +nQ (9)

n l-0
where E  is defined in Equation (8).

In Reference [6] it is shown that a good approximation
to T, is

Tn = nQEr + nQ (10)

When we compare Equations (9) and (10), we see that for
units which require a number of service intervals less
(greater) than 1/(1-0), the round-robin waiting time is less
(greater) than the strict first-come first-served system.
One notes, however, that the average number of service
intervals, T, is exactly 1/(1-0). Thus, for this approxi-
mate solution, the crossover point for waiting time is at the
mean number of service intervals. This effect is observ-
able in Figures 5-7 in Section IV,

The Processor Shared System

This model considers the limit of the round-robin
model in whichQ = 0 and 0 = 1 - uCQ, giving a Poisson
arrival mechanism with an average of X units arriving per
second and an exponential service distribution with an
average of 1/u operations per customer. We have the
following:

THEOREM 3: The expected value T(4) of the total
time spent in the processor-shared system for a customer
requiring £ operations, is

iy e
Tk =<7 (11)
where
p = A/uC (12)
C = capacity of the processor in operations per
second.
The expected number, E, of customers in the system is
E = £ (13)
1-p

In Section IV we compare these results with that of the
round-robin model.

The Priority Processor-Shared System

In this system, we have P priority groups with
Poisson arrivals at an average rate of Ap per second and
1'This is our reference system and corresponds to the more

usual case where a unit receives its complete processing
requirement the first time it enters service.

an exponentially distributed service requirement with a
mean of 1/u, operations (p =1,2,...,P). For a processor
of capacity E operations per second, we assign a customer
from the pth priority group a capacity f C when there are
n; type i customers in the system; fp & given by Equation
(4), viz.,

g
f.=—P

g T (4)
Y gn,
{71 1

For such a system, we have the following Theorem.

THEOREM 4: The expected value Tp(l) of the total
time spent in the priority processor-shared system for a
customer from priority group p who requires £/ operations
is

P 2.0
4 i'd
T (4) == |1 + ) =7 (14)
p c =1 gp(l p)
-
the expected number, Ep, of type p customers in the sys-
tem is
P P [ g >
p i
E ==E f1+) = -1]p, (15)
p 1-p 21 gp i
L
where
AP
R =i
c

p Mp

and
P
i
p=1

and where gp> 0:ip =815 25w P

In the following section, we compare this priority
processor-shared model to the other two models studied.
For completeness, we also consider a strict first-come
first-served system with the same input and service re-
quirements as in our priority model. To this end, we have

THEOREM 5: The first-come first-served system
with a priority input yields, for customers with £ required
operations, a total expected time in system as follows

.4 . pkC
T(4) =C o T~p (16)
where
Hais 557 0
uC P (17
LA
p=1 P

We note that, for P = 1, we have the (non-priority)
processor-shared system.

IV DISCUSSION, EXAMPLES, AND COMPARISON OF
THE SYSTEMS

Having considered three models of time-shared sys-
tems, we now wish to compare their performance among
themselves as well as with the first served systems. The
basis of comparison will be the average conditional



additional delay experienced a customer (conditioned on his
required processing as well as on his priority). We define
the additional delay as the difference between the time such
a customer spends in the time-shared system and the time
he would spend in the system if no other customers were
present (in a first-come first-served model, this is merely
his time in queue), i.e., let

\'4 (E) = the average additional delay experienced
by a customer from priority group p who
requires 4 operations in service (obvious
analogous definition for W (n) and W(n) in
the Q > 0 case).

We haveT

W () =T () -2/C (18)
P p

In the most general model, we wish to display curves of
Wp(£) as a function of £ and as a function of p with p as a
para.meter Furthermore we choose to plot

l-0
— P w (n)
o Q P

P
rather than W_(n) for purposes of a convenient normali-
zation, which, in the case for Q -~ 0 becomes ppC wpw )a

Below we present these curves for various examples.

The Round-Robin System

In Figures 5-7, curvest of (1-0)/(0Q) W, =k W, are
plotted to show the general behavior of the round-robin
structure for the late arrival system. On each graph,
(circled) points corresponding to the first-come first-served
case have also been included. The normalization (1-0)/(0Q)
used is such that for the first-come first-served case, we
obtain the curve p/(1-p) which is a function only of p.

Figures 5- 7 indicate the accuracy of the approxi-
mation discussed above in which the crossover point for
waiting times is at the mean number of service intervals,
1/(1-0). In Figures 5 and 6 there is no noticeable dif-
ference (on the scale used) between the first-come first-
served points, and the curve for n = 1/(1-0); moreover, in
Figure 7 the points fall between the curves for n = 1 and

= 2, since 1/(1-0) = 1.25.

In Figure 8, we plot kW, as a function of n for
=1/2, o =4/5. In all these curves (Figures 5-8) we ob-
serve that by introducing the round-robin system, one
manipulates the relative waiting time for different jobs and
thus imposes a method of time-sharing which gives pre-
ferential treatment to short jobs.

The Processor Shared System

In Figures 9 and 10 below, we plot uCW(£) as a
function at p (for various uf) and as a functionx of uf (for
various p) respectively.

TObviously, for Q> 0 we have Wp(n) = Tp(n) - nQ.

IThese are the same curves as in Kleinrock [6]. In these
curves, p was varied by fixing ¢ and varying AQ (recall

p =AQ/(1-0).

Tuz = I—/%f is the length of a job normalized with respect

to its average length.

In Figure 10, the circles indicate the values of
uCW(£) for the strict first-come first-served system (see
Theorem 5). Again we see the preferential treatment given
to shorter jobs, and again we see that the ""break-even'
point for jobs is the average job length (u 4 =

The Priority Processor-Shared Model

For these curves, we let u_ =u, A_=)/P, P =5 for
p=1,2,...,5. InFigures 11-13 we show ,uCWp(l) as a
function of p for various p and for uf=1. Figure 11 is
for g p ; Figure 12 is for g, = p; and Figure 13 is for
xiogz (p+1). In each of these figures, the circles cor-
respond to the strict first-come first-served system
(which compares the treatment as a functlon of p for the
two systems).

In Figures 14-16 we show u CW_(£) as a function of
uf for various p and for p = 1/2. Again g_= p2. g
and g, = 1og2(p+1) for Figures 14, 15 and 16 respectively.
In each of these figures, the circles correspond to the
behavior of a first-come first-served system (on these
axes, it is a constant additional delay, independent of u £).

In both processor-shared models, W (i) approaches
zero as p ~ 0 for all £ and p.

In all of the curves presented, we see that the effect
of introducing a time-sharing discipline is to reduce the
average waiting time for customers with ""short' service
(processing) requirements at the expense of those custom-
ers with "longer'" service requirements. For the non-
priority cases (i.e., the first two models studied) we ob-
serve that customers with service (processing) require-
ments less (greater) than the average requirement spend,
on the average, less (greater) time in the system, com-
pared to a strict first-come first-served system.

In the priority processor-shared system, we see a
similar trend (i.e., short jobs wait less than long jobs) and
in addition, we give preferential treatment (shorter waiting)
to certain select high priority groups. The effect now is
that for job lengths below some critical value (dependent
upon p, the priority group) a customer does better (waits
less) in the time-shared system than in a first-come first-
served system. This critical length is monotonically in-
creasing with p. The degree and manner in which the dif-
ferent priority groups receive treatment depends upon the
function g, and may be varied over a considerable range of
relative performance.

CONCLUSION

In this paper, we have considered serveral models of
time -shared processing systems. These models provide
the basic features desired in such systems, namely, rapid
service for short jobs, and the virtual appearance of a
(fractional capacity) processor available on a full-time
basis.

The most general model, the priority processor-
shared system, not only provides the above features, but
also allows the population of customers to be divided into
priority classes where the higher priority groups receive
preferential treatment compared to the lower priority
groups.

The assumption of zero swap-time results in models
which provide the best possible performance of such time-
shared systems. Comparison of these systems with the
strict first-come first-served systems showed the relative
improvement (or deterioration) of performance as a



function of service requirement and priority group.
REFERENCES

1. R.M, Fano, "The MAC System: The Computer
Utility Approach,' IEEE Spectrum, Vol. 2, No. 1,
pp. 56-64, January 1965,

2, W.W. Lichtenberger and M, W, Pirtle, "A Facility
For Experimentation in Man-Machine Interactions, "
Proc, Fall Joint Computer Conference, Vol, 27,
Part I, pp. 589-508, 1965,

3 J.W. Forgie, "A Time-and Memory-Shaving Exe-
cutive Program for Quick Response On-Line Appli-

cations," Proc. Fall Joint Computer Conference,
Vol. 27, Part 1, pp. 599-609, 1965,

J. McCarthy, "Time-Sharing Computer Systems," in
Management and The Computer of the Future, M,
Greenberger, Ed., Cambridge, Mass., the MIT
Press, pp. 221-236, 1962.

J.I, Schwartz, E,G, Coﬁman, and C, 'Weissman,
"A General Purpose Time-Sharing System," Proc.
Spring Joint Computer Conference, pp. 335-344,
1962,

L. Kleinrock, "Analysis of A Time-Shared Proces-
sor," Naval Research Logistics Quarterly, Vol, 11,

No. 10, pp. 59-73, March 1964,

List of Figures

The Round-Robin Time-Shared Service System

Priority Processor-Shared Model with np Type p

Performance as a
Performance as a

The Priority Processor-Shared System. Performance

The Priority Processor-Shared System. Performance
=p(P=1,2,3,4,5),

The Priority Processor-Shared System. Performance
as a Function of p for gp=logg(l+p) (p=1,2,3,4,5),

The Priority Processor-Shared System. Performance

The Priority Processor-Shared System. Performance

Figure 1
Figure 2 Processor-Shared Model with N in System
Figure 3 The Round-Robin Time-Shared Service System
with Priorities .. Q> 0
Figure 4
in System
Figure 5 [(1-0)/(0Q)] Wy, for the Round
Robin System. (o = 19/20)
Figure 6 [(1-0)/(¢Q)] W, for the Round
Robin System. (o = 4/5)
Figure 7 [(1-0)/(0Q)] Wn‘ for the Round
Robin Service System. (o = 1/5)
Figure 8 [(1-0)/0Q] Wy, for Round Robin
System as a Function of n (p=1/2, 0=4/5)
Figure 9 The Processor-Shared System.
Function of p for Various u#
Figure 10 The Processor-Shared System.
Function of u#4 for Various p
Figure 11
as a Function of p for gp = p2 (p=1,2, 3,4,5),
HBp = by Ap= /P, and pf =1
Figure 12
as a Function of p for g
Bp =Hs A = A/P, and pb =1
Figure 13
Bp =Hs A= A/P, and pf=1
Figure 14
as a Function of ut for gp =p2(p=1,2,3,4,5),
Mp =M, Ap=A/P, and p=1/2
Figure 15
as a Function of u4 for gp = p(p=1,2,3,4,5)
Hp =M, Ap= AP, and p=1/2
Figure 16

The Priority Processor-Shared System. Performance
as a Function of p for gp =log (1+p) (p=1,2,8,4, 5)
Bp =Hs Ap=A/P, and p=1/2



v 94

(TVILN3INOGX3)

PO

/i

pli-0)

A  QUEUE
SBT B4 SERVICE
s o5 FIG | FACILITY
IRE 3R
O r<=-m nNV
2 M- 5 © n\z
38 33 POISSON
Bt ik ey APER | /N | ¢-7oTAL PROCESSOR
ik ) CEN CAPACITY
D o e T [ (IN OPERATIONS
. 2 Tl T . PER SECOND)
—— : s ¢ JERAGE .
=58 ! ol ESOCESSHIE. | L. )
g3 R S 3 F ZQUIREMENT C/N
z v B - - | /f+ OPERATIONS [ ¢/
= ~— N CUSTOMERS
3 o EXPONENTIA
283 £} < .  PRESENT
@0 F o
o o
g55
2o —
o—— ==V ooo e
A Q QUEUE p(1—0y)
SERVICE P

Fic 3 FACILITY



8 9ld

03AY¥3S 1SHId
3WNO0D 1SHId
HO3 UYMy

—0lI
Q 9 95 s 94
\ . : . : d
o__ m_o 90 0 20 5 SR TR
T
_ — v
x
G =
g Q3AY3S 1SHI4
IW0D 1SHI4
02:=u 404 Ymy
12




-~— 97 Ol 914
0S- &P .00 8% . 0% - 8¢

!

s e

|

Be - 5l o1 G0 0

&
1%
g
' &)
=
W3LSAS <
J3AY3S =g
1SYH14
Bl el
154ld- — Ol
Ol/6=d
{21
-J’ b|
— 6 94
| d
g S Ol 80 90 0 <20
o'l 80 90 ¢0O0 20 OO [
|
Q3AY3S
ol/1=gm 15314
3W0D
15414
G=d—__
t7=d‘\
FTES
g:"f{
e e
1414~ Ol=y7

Ol

(Mo



10
i FIRST B
COME
FIRST ile
SERVED
SYSTEM
8'_ /
FIRST COME '
; FIRST SERVED :
f
6= -
L =§
:n. Sr- o4
O =5
£ §
4
p=3
p=4 :
p=5
2
|
J

BT e R e e - 0 502 o4 06 0B 10




91 914

d3A43S
1Sdld
JNOD
1S4

e

0l

14

Pl

(J)dmor

(Dm0



