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Packet  Switching  in Radio Channels: Part IV-Stability 
Considerations  and  Dynamic  Control  in Carrier Sense 

Multiple  Access 

Absmct-In  two companion papers a  method  for  multiplexing  a 
population of terminals  communicating  with  a  central  station  over  a 
packet-switched  radio  channel  was  introduced;  this  method is known  as 
Carrier Sense  Multiple  Access (CSMA).  CSMA, as  with ALOHA multi- 
access  broadcast  channels,  has  the  unfortunate  property  that  the 
throughput  falls to zero as the  channel  load  increases  beyond  a  critical 
value. The  dynamic  behavior and stability o f  slotted ALOHA channels 
have been  studied  extensively and  have led to a  definition  of stability. In 
this  paper, similar techniques are used to analyze CSMA, which is shown 
to have  a  behavior not unlike  that of ALOHA. However,  contrary 
to ALOHA channels where steady-state  performance is badly  degraded 
when true stability is to  be guaranteed,  hence requiring dynamic con- 
trol,  we  find  that  CSMA'provides  excellent  stable  performance  even 
with  as large a  population  as 1000 terminals.  Furthermore,  we  study  a 
simple  adaptive  retransmission  control  procedure  which  provides  a 
significantly  improved  channel  performance  which  is  insensitive to the 
population  size. 

1. INTRODUCTION 

I N PART I of this series [ 1,2] , a  packet-switching technique 
referred to as Carrier Sense Multiple Access (CSMA) was 

introduced and studied in  detail.  This technique enables  effic- 
ient sharing of a data  communication channel by a large 
population of bursty users in  a  ground  radio environment; this 
environment is characterized by a propagation delay between 
terminals  which is very small compared  to  the transmission 
time of the  packet. Briefly, CSMA reduces the level of interfer- 
ence (caused by overlapping packets)  in the  random multiaccess 
environment by allowing terminals to sense the carrier due to 
other users' transmissions; based on this  channel state  infor- 
mation (busy or idle), the terminal  takes an action prescribed 
by the particular CSMA protocol being used. In particular, a 
terminal never transmits  when it senses that  the channel is 
busy. In Part I we described and analyzed two  protocols 
referred to as nonpersistent and  p-persistent CSMA; the 
performance of these was  given in terms of channel capacity 
and  throughput-delay  tradeoffs.  The analysis was based on a 
number of model  assumptions. First, we assumed that  our 
traffic  source  consists of an infinite number of users who 
collectively form  an  independent Poisson source.  This is 
merely an approximation to  the case of a large but finite 
population in which each user generates packets  infrequently 
and  each packet can be successfully transmitted in  a time 
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interval much less than  the average time  between successive 
packets  generated by  that user. Each user in the infinite 
population was thus assumed to have at  most  one  packet 
requiring  transmission at  any  time (including  any previously 
blocked  packet). Secondly, we assumed that  steady  state 
conditions prevail. With this  inifinite population model we 
could then  determine analytically the capacity of the channel 
under  the various protocols; we also established  a  measure of 
the delay performance in terms of the average number of 
transmissions and schedulings incurred  by a packet until 
success. The analysis of packet  delay, however,  proved to be 
complex  and simulation  techniques were used. The results 
derived from simulation were also based on  the assumption 
that whenever the system reaches a stationary  state in  which it 
remains for a reasonable length of 'time  (namely, the simula- 
tion run time of 10,000 packet transmission time,  determined 
empirically), then  the system must have reached steady  state; 
the  throughput-delay results so derived then represented the 
equilibrium  channel  performance. We realized that  many of 
these  assumptions  (infinite population, Poisson input,  sta- 
tionarity,  stability) merely  represent approximations to  the 
physical situation,  and  that  without  them  the  mathematical 
analysis becomes untr'actable and  solutions are difficult to 
come  by.  The  question  to be asked at this point is, in view of 
our assumptions, how valid are our results? 

Random multiaccess broadcast channels are characterized 
by the  fact  that  the  throughput goes to  zero  for large values of 
channel  load.  This is due to a positive feedback of traffic 
which is inherent to  the  operation of these  systems. If,  for 
some  reason, the  rate of retransmission of packets increases, 
interference  may become so.frequent  that fewer transmissions 
are successful and yet  more users s h f t  to the retransmission 
mode,  thus  further increasing the retransmission rate,  etc. 
Moreover, extensive  simulation  runs performed  on  slotted 
ALOHA channels with an infinite population [3] have shown 
that  the  assumption  of channel  equilibrium may  not always be 
valid. In  fact,  after some  finite time period ofquasi-stationanty 
conditions,  the channel will drift  into  saturation  with  proba- 
bility one 

Thus, as realized by  Kleinrock and Lam [4], the (assumed)' 
equilibrium throughput-delay results are 'not sufficient to 
characterize the  performance  of  the infinite population. A 
more representative  measure of channel  performance is the 
stability-throughput-delay  tradeoff. In their  paper, Kleinrock 
and Lam defined a mathematical model  which  characterizes 
the  slotted ALOHA channel state-by a single variable. (The 
model is similar to  the linear feedback  model  studied  by 
Metcalfe who gave a steady-state analysis of the  slotted ALOHA 
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system behavior [SI .) Based on  the  model, a theory was pro- 
posed  in [4] which  characterizes the  instability  phenomenon 
by  defining  stable and  unstable  channels; in stable channels, 
the equilibrium throughput-delay results (i.e., obtained  under 
the channel  equilibrium assumption) are achievable over an 
infinite  time  horizon, while in unstable channels, such channel 
performance is achievable only  for some  finite time period 
before the channel goes into  saturation (in which it remains 
for a long period of  time);  for /unstable  channels,  a stability 
measure is defined and a computational  procedure  for  its 
calculation is given. Using this stability measure, the  stability- 
throughput-delay  tradeoff for an unstabilized  channel is 
obtained. 

Independently using the same model, Carleial and Hellman 
[6] analyzed the behavior of  slotted  and  unslotted ALOHA 
channels;  their results  reconfirm the bistable nature of unstable 
channels as defined above. In  their recent paper, Fayolle et al. 
[7 ]  give yet  another  theoretical  treatment of the  instability 
of slotted ALOHA channels with  infinite  populations  and give 
some control policies to recover stability. 

The  purpose of this paper is to  apply  the  stability  theory 
defined in  [4]  ,in  order  to  predict  the behavior of CSMA 
channels, discuss the  conditions  under which we can guarantee 
stability  and finally give the  performance  of these guaranteed 
stable  channels. (We restrict ourselves to  the  nonpersistent 
CSMA protocol because of its simplicity  in analysis and imple- 
mentation, as  well as its relatively high  efficiency.) For this we 
first review, in  Section 2, the  nonpersistent  protocol  and 
describe the  mathematical  model. In Section 3 ,  we focus  on 
the analysis of  nonpersistent CSMA which allows us to  obtain 
analytically, for  the finite population  model,  the  throughput- 
delay performance as  well as'the  effect  of  the retransmission 
delay and  of  the  population size on  the  performance.  Next, 
in  Section 4, we apply the stability theory introduced  in [3] 
and [4] to CSMA, discuss the channel's behavior, and give an 
analysis for  the channel performance during the  uptime of 
unstable  channels; this  finally provides us with  the  actual 
stability-throughput-delay  tradeoff.  Furthermore,  in  Section 5 ,  
we study  an adaptive  retransmission control  procedure which 
stabilizes the channel and provides us.  with a  significantly 
improved  channel performance,  shown  to be  practically inde- 
pendent of the  population size. 

2. THE MODEL 

Briefly, the idea in  nonpersistent CSMA [ l ]  is to limit 
repeated  interference  among  the  packets  by always rescheduling 
(into  the  future) a packet which  finds the channel busy.  Thus 
a ready  terminal  (one  with a packet to be transmitted) senses 
the channel and proceeds as follows. 

1) If the channel is sensed  idle, it  transmits  the  packet. 
2) If the channel is sensed busy,  then  the terminal sched- 

ules the retransmission of the  packet to some later 
time,  and  then repeats the algorithm. 

A slotted version of the  nonpersistent CSMA  is considered 
here  in which the  time axis is (mini-) slotted  and  the  slot size 

is T seconds (the  propagation delay). Packets, assumed to be of 
fured length, require  a  transmission  time of T slots.  (Typically, 
T is on  the  order of 100; this  corresponds then  to a ratio of 
propagation delay T to transmission time T of 0.01 [l] .) All 
terminals  are  synchronized and are  forced to  start transmission 
only at  the beginning of a slot. When a  packet's arrival occurs 
during  a slot,  the terminal senses the channel at  its arrival and 
then  operates according to  the  protocol described  above. 
Without loss of generality, we assume that  the sensing opera- 
tion is instantaneous on this relatively wide-band channel. 

We consider  a user population consisting of M users (ter- 
minals), all in  line of sight and  within range of each other. 
Each such user can  be in  one of two  states: backlogged or 
thinking. In the  thinking  state,a user generates## a  new packet 
in  a slot  with  probability u. A user whose packet either had a 
channel collision or was blocked because of a  busy channel is 
said to be backlogged. A backlogged user remains  in that  state 
until  he successfully transmits  the  packet  at which  time he 
switches to  the  thinking  state.  Thus, a user in the backlogged 
state  cannot generate  a new packet  for transmission. The 
rescheduling  delay of a backlogged packet is assumed to be 
geometrically distributed, i.e., each backlogged user is sched- 
uled to resense the channel  in the  current  slot  with a probability 
v ;  as specified in  the description of the  protocol, a  retransmis- 
sion  would  result only if the channel is sensed idle. The 
memoryless property of the geometrically distributed  retrans- 
mission delay will permit a  simple state  description  for  the 
mathematical  model as can be seen in  the sequel. We shall 
further assume that a terminal learns about  its success or 
failure instantaneously  at  the  end of its transmission period; 
i.e., no  time-out  period  for receiving acknowledgement packets 
is assumed. However, the terminal  stays  in the backlogged 
state during the transmission period. 

Let Nt be  a random variable called the channel backlog 
representing the  number  of backlogged users at  the beginning 
of slot t. The channel input  rate  at  time t ,  defined as the 
average number  of new packets generated by  the  thinking 
users at  time t ,  is denoted  by Sf. Obviously, Sf decreases as 
Nf increases. For the purpose of this study, we shall assume M ,  
u and v to be time invariant. 

In  slotted ALOHA, the  action  that a  terminal  takes per- 
taining to  the transmission of a packet  (either newly generated 
or rescheduled) is completely  independent of the state of the 
channel* (busy or idle). Therefore,  in  slotted ALOHA, the 
channel  backlog over a (large) slot (equal to  the transmission 
time of a packet) is a Markov process with homogeneous 
stationary transition probabilities  and serves as the  state 
description for  the  system. In CSMA, on  the  contrary,  the 
action  taken  by a  terminal depends 'on the  state of the  channel. 
For  example, assume that some new  packets are  generated by 
users in  the  thinking  state during  a  transmission  period.  Those 

##At the  time  a user in the  thinking  state  generates  a new packet, it 
senses the  channel,  and if the  latter is idle,  it  transmits  the  packet  with 
probability  one. 

*The state of the channel (busy, idle) is to be distinguished from  the 
state of a user (thinking,  backlogged) or  the state of the system defined 
as the  channel backlog. 
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users sensing the channel  busy  are  blocked and switch to  the 
backlogged state  with  probability  one. Thus we note  that  the 
transition probabilities of the process representing the channel 
backlog are not  independent of the  state of the channel. We 
derive these transition probabilities  below. The discrete state 
space of the system  consists of the integers (0 ,  1 , 2 ,  -.,M}. 

3. ANALYSIS 

Consider the "imbedded" slots defined to be the first slot 
of each idle period (see Fig. 1).  The intervals of time between 
two consecutive imbedded  slots are defined as cycles [ l ]  . 
These cycles, of course, are of random  length. Consider  one 
such cycle and  let t, denote  the first slot. N f e  denotes  the 
state of the system at t,. Let I denote  the  length of the idle 
period (in slots). The  length  of  the cycle is then I + T + 1. 
(This last slot, represented  in Fig. 1  by  dashed  lines, accounts 
for  the  propagation delay; it is only  one slot after  the  end  of 
transmission that  the channel will be sensed idle.) By defini- 
tion,  no terminal is ready  during the interval [t,, te + I - 21 ; 
however, at least one terminal  becomes  ready  in the last slot of 
the idle period, i.e., at  time t, + I - 1. (Vertical arrows  in 
Fig. 1 represent arrivals.) For all t ' E  [t,, t, + I - 11 we have 
N f  = N ' e .  All terminals  which become ready at t, + I - 1 will 
sense the channel idle and will transmit  at  the beginning of  slot 
t, + I .  Given that Nfe+'-' = i,  the  probability  that some 
terminal is ready is  given by 

Pr {some terminal is ready/Nfe+'-l = i} 

= 1 - (1 - v)'(l - u y - i .  (1) 

Conditioned  on  the  fact  that a  transmission starts  at  slot t, + 
I ,  let R = ( r i k )  be the  one-step  transition  matrix  between  slot 
t, + I - 1 and t, + I .  That is 

, EMBEDDED SLOTS 

t-CYCLE-----------------( 

Fig. 1 .  The  Imbedded Markov Chain in  Slotted  Nonpersistent CSMA. 

state if they were already  backlogged, or switch to  the back- 
logged state if they were in  the  thinking  state.  For  any t € 
[t, + I + 1, t, + I + TI ,  let Q = ( q i k )  be the  one-step transi- 
tion  matrix defined by 

4 i k  2 Pr { W  = k1Nf-l = i}. (4) 

For i = 1, 2, -, under  the convention that ( z )  = 0 for k > M ,  
we have 

k < i  

Finally,  let Q' = ( q i k ' )  be the one-step transition  matrix  corre- 
sponding to  the last slot of the cycle 

For i = 0, 1 , 2 ,  -., we have 

k < i  

(1 - aY- ' [1  - (1 - v>'] 
1 - (1 - v)'(l - O F - '  

, k = i  

l i k  = 

On the  other  hand, all ready  terminals  in the interval [t, + I ,  
t, + I + TI  will sense the channel  busy and will be  blocked 
from transmitting;?  these  terminals  remain  in the backlogged 

?According to  the  slotted  nonpersistent CSMA described  above, 
packets arriving during slot f, + I + T will sense the  channel  busy  and 
will be  blocked.  Consequently,  the idle period  between  two transmis- 
sion periods will always be at least one slot. 

Since  this step corresponds to  the last slot  of  the transmission 
period,  two  types  of events exist: (i) if there exists  a single 
transmitting terminal, that transmission is successful and  the 
corresponding  terminal  switches to  the  thinking  state; (ii) ter- 
minals that are ready  during the last slot will still sense the 
channel  busy at  that slot and will become backlogged if they 
were not already  in that  state.  The  probability of success over 
the transmission  period is dependent  on  the  state of the 
system at  the time the transmission begins, i.e., on Nfe+'-' 
which equals N f e .  Conditioned  onN*e = n,  the  probability of 
success, denoted by Ps(n) is  given by 

(1 - v)"(M -n)o(l - fJy-"-l + nv(1 - v)"-l(l - oy-n  - - 
1 - (1 - v)"(l - oy-n  

The last step  transition probabilities therefore also depend  on 
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N f e  and are  expressed for j = 1, 2 ,  ..., M as 

k < j -  1 

I k >j. (8) 

Let us now  focus  on  the  state of the  system  at  the  imbedded 
slots defined  above. Clearly N'e constitutes an &bedded 
Markov chain.  Let P = ( P n k )  be  its  transiti0n:'matrix;  that is 

i., 

P n k  = pr{Nte+l+T+l = k/Nte = n} .  (9) 
I' 

To  compute P, we first compute  the  matrix P' = ( p n j ' )  de- 
fined  by " 

It is clear that P' is computed by 

where QT is the  Tth power  of the  matrix Q. The  matrix P is 
then simply computed as follows: 

M 

j =  n 

From a  practical point  of view, it is advantageous to realize 
that P can  be  more easily computed  from  matrix P" = ( p i j " )  = 
RQT+l  by  the following  simple transformation: 

Given M (finite), u and v ,  the  finite  state  imbedded Markov 
chain is ergodic  and  a stationary  probability  distribution 
exists. We denote  the  latter  by 

where 

nj = lim Pr {N'e = j } .  
t e+ -  

n is obtained  through  the system  of equations 

n=m. 

Distribution of the  Length of the Idle Period 
Let qk( i )  Pr{I = k/Nfe = i } .  Since the  state of the 

system remains unchanged  during the idle period, A i  = (1 - 
~ ) f ( 1  - is the  probability, given Nf = i, that  no  ter- 
minals become ready  during slot t ;  thus we have 

The average idle  period is 1 /( 1 - S i ) .  

Stationary Average Channel Backlog 

log. % is  given by 
Let E denote  the overall time average of  the  channel  back- 

where 

E 
E 
i = O  
- 

i = O  

and s i j ( m )  is the (i, j)th  element of matrix S ( m )  defined  by 

Proof: Consider a period  of time consisting of a large 
number L of cycles during'which  the  channel is assumed to 
have already  reached steady-state. By definition,  can  be 
obtained as the  ratio of the sum  of backlogs over all slots in 
the  period to  the  length (in slots)  of that  period.  For  this, we 
first recognize that 7riL is the  expected  number of  cycles such 
that  the backlog at  their  imbedded;  points, N'e;  equals i .  
SCm) = ( s ~ ~ ( ~ ) )  as defined  in Eq. (19) is the  transition  proba- 
bility matrix of the process up  to  the  mth  slot following the 
start  of transmission  of the  packet.  For each  of  these  cycles, 
the sum  of backlogs over the transmission period is given by 

T m i n ( M . i + m + l )  

If the  length I of the idle  period is equal to  k slots,  then ki is 
the  sum of backlogs over the idle period. By taking  the  sum 
over the idle periods of all cycles such  that Nte '= i ,  we see 
that,  letting L be  arbitrarily large, this sum  is, by renewal 
theory  arguments, equal to  n i L [ l / ( l  - Ai)]i. Therefore,  the 
total  sum  of backlogs is simply  expressed as 
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9 niL [ i + A(i)  
i=  0 1 - 6 i  1 

By a similar argument,  the  length  of  the  period  of L cycles is 
given by 

2 n i L  i= 0 [ I + T + l ] .  1 - 6 i  

By taking  the  ratio  and  letting L + 00, we g e t x a s  expressed 
in  Eq. (1 7). ' Q.E.D. 

Stationary Average  Channel Throughput 

The average normalized throughput (defined as the average 
number of successful packets per T slots), denoted by Sout, 
is  given by 

i = O  

where P,(i) is givenby Eq. (7). 
Proof: P,(i) is the  probability of a successful transmission 

over a cycle such  that Nte = i. By using arguments similar to 
the previous proof, we get Eq. (20). Q. E. D. 

Expected Packet Delay 
The  expected  packet delay is also the average backlog time; 

by Little's  result [ 8 ]  , it is simply  expressed as 

Some Computational Considerations 
The numerical  evaluation of  the above model leads to 

the (equilibrium) throughput-delay performance of a slotted 
nonpersistent CSMA mode in  a finite  population  environment. 
However, for large systems (large T, large M ) ,  serious computa- 
tional problems  occur, causing an enormous  amount  of  under- 
flows to  take place in the numerical computation of P. Indeed, 
a  typical value for T (typical for  the  ground radio  systems in 
consideration) is 100. On the  other  hand,  the  throughput Sout 
is always upper  bounded  by 1 and, as  we shall see in the 
following section,  the value of MuT which  leads to a reasonable 
channel operating behavior is also on  the  order of 1. Therefore, 
we see that  the  maximum value of u (probability  that a 
thinking  terminal  generates  a new packet in  a  time-slot) is 
extremely small (for T = 100 and M = 100, for  example, u z 
lov4) causing the underflows to occur. Fortunately,  approxi- 
mations are possible which permit us to alleviate the  computa- 
tional  difficulties without seriously  affecting the numerical 
results. For  such a small u, we shall approximate  the binomial 

distribution  of  the  number of new packets  generated  per slot 
from  the pool of thinking users by a Bernouilli distribution. 
(The approximation  has been  checked on small size systems, 
T = 10, M = 20, to give extremely  accurate results. For T = 
100,  the  two models are essentially  identical!) Therefore,  for 
the purpose of this study, we shall use the following simplified 
forms  for various previously defined quantities: 

. 
I O ,  

k < i  

( M  - i)u 

1 - (1 - v)'[l - ( M -  i)u] 
, k = i  

I 07 

k < i  

(M - i)u, k = i +  1 

k > i +  1 

k > i +  1 

k < i -  1 

[ l  - (M - i)u] [I -P,(n)]  
qik ' (n)  

+ (M - i)uP,(n), k = i  

Moreover, we show in Appendix A that  due  to  the special 
(almost  triangular) form of matrix P, characterized by p i j  = 
0 for j < i - 2.  the  solution of the system given in  Eq.  (15) 
may easily be obtained recursively. This recursive method is 
such  that each column of P is used exactly once and can  be 
generated only when  needed.  This  eliminates  a major  computer 
storage constraint  on  the dimensionality of the  problem which 
would be encountered were it necessary to  store  the  entire 
matrix  at  once. 

Some Numerical Results 

Using the finite population  model described  in Section 2, 
we can  analytically verify the conclusions regarding the  effect 
of retransmission  delay on channel performance  drawn  from 
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simulation in  Part I [ 1 J . For  this we plot  in Fig. 2,  the  delay- 
throughput curves for M = 50 and  various values of v. The 
average retransmission delay here is l / v  slots. We note  that  for 
decreasing values of v the maximum achievable average 
throughput increases.  Moreover, for each value of Sout, there 
exists  a value of v which achieves minimum delay. The 
throughput-delay  performance of the  system is obtained  by 
taking  the lower  envelope  of  these curves. Fig. 3 displays these 
lower  envelopes for various values of M (In the case M = 5000, 
due to  excessive computation,  the search for  the lower en- 
velope was not carried out  to  the full extent;  the  anticipated 
lower  envelope is shown as a dashed line.) 

4. STABILITY  CONSIDERATIONS 

Theoty 

The following treatment strongly  follows the  work  by Lam 
and Kleinrock on  slotted ALOHA channels [3 ,4]  . 

Consider an  arbitrary cycle such  that N f e  = n. The  expected 
number of successful packets during the cycle is  given by 
P,(n) (see Eq. (7)). On the  other  hand,  the  expected  number 
of new  packets generated in  the system is the  expected increase 
in N t  over the  entire  cycle;  it is expressed as 

100 

50 

- 
I- 

b 20 
v) 

3 
z k 

z 
>. 10 

- 
4 

L 

2 5  

0 
u1 

Y 
0 

2 

Y = 1/10 -/- 

Y = 1/12 

Y =  1/15 

u=1/20 -' I 

.1 .2 .3 .4 .5 .6' .7 .E .9 
CHANNEL  THROUGHPUT SOUT 

Fig. 2. Delay-Throughput  Curves in  Finite  Population  Slotted 
Nonpersistent CSMA Channel. 

where A(n)  is the sum of backlogs over the transmission period 
and is  given by Eq. (18). 

Let Sin(n, a) be  the average input  rate over the cycle 
normalized with respect to  T ;  it is expressed as 

c I 

i SLOTTED  NONPERSISTENT CSMA I 
T = l  00 o? 

50 / 
/ 

t 
t / I 

M=5000 / 

/ 
/ 

M=1000 / 

I 

where [ 1  /(1 - S,)] + T + 1 is the average cycle length. Given 
M ,  u and v, Sin(n, u) is also referred to  as the average instan- 
taneous channel load. For  fiied values of v and u, given N t e  = 
n,  we plot n versus P,(n) and Si,(n, a). Examples are shown in 
Fig. 4. (Note  that P,(n) is insensitive t o  variations in u, this 
was successfully tested  for a wide range of M and 0.) We note 
here that  there are  equilibrium points defined (at some value 
of n)  by P,(n) = Sin(n, 0). On  the  other  hand,  for each value 
o f n ,  we can  find a value u* of u such  that P,(n) = Sin(n, u*). 
Consider now  the two-dimensional  plane (n, S) on which we 
plot Sin(n, u*) versus n. This plot  determines an equilibrium 
contour [3, 41 defined by  the  property  that,  for each n,  the 
expected  number of successful packets over the cycle  equals 
the  expected  number of packets newly  generated during  that 
cycle. For a given v and a given n,  P,(n) decreases and Si,(n, u) 
(and  therefore Sin(n, u)) increases for increasing values of u. 
Thus for > u*, Sin(n, u, exceed Ps(n). This means that Fig. 3. Slotted  Nonpersistent CSMA Channels: Minimum delay for 
in the region enclosed by the equilibrium contour, the ex- Various Values o f M ( T  = 100). 

CHANNEL  THROUGHPUT SOUT 
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Ps (N'9 AND Si,,(Nte, a)  

Fig. 4. Expected Number of Successful PacketsP,(n) and New 
Packets Sin(n, u). 

pected  number of successful packets P,(n) exceeds the 
expected  number  of newly  generated packets; elsewhere, the 
opposite is true  and  the system capacity is exceeded! Using u* 
for  eaih n, we may  plot  a  family of equilibrium contours for 
various values of v. To simplify  this task, we note  that some 
approximations are possible. 

We first observe that  consistently [A(n)/(T + 1)] is very 
close to n so that  it is legitimate to  approximate M - [A(n)/ 
(T + l)] by M - n. (In  fact,  the only  significant  discrepancy 
between [A(n)/(T + l)] and n is seen for small n,  namely, 
n = 0 and n = 1, which of course  has little  effect on M - 
[A(n)/(T + l)] .) Under  this approximation, Sin(n, a) and 
Sin(n, u) can be approximated by 

(an intuitively pleasing result). For  the infinite population 
model, i.e.,  in the limit as M f m and u .1 0 such  that Mu = s 
is finite and  the channel input is Poisson distributed at the 
constant  rates (packets per slot), the above equations reduce to 

Sin@, U) 2 Sin'@, s) = + s(T+ 1).  
1 - (1 - v)ne-s 

These ex$ressions are very accurate even for  finite M if u < 1 
and if we replace s =Mu by s = (M - n)a. (The  condition u Q 
1 is always satisfied in  problems  of  interest  to  this  study; see 
our comments  on  computational considerations above.) 
Equating P,'(n) to Sin'(n, O) we can determine for  each n the 
value of s and therefore ST ( r ( M  - n)uT Sin'(n, u)) which 
defines the equilibrium contours.  In  fact, since for each point 
of the equilibrium contour  equality  holds between Ps'(n) and 
Sin'(n, u), it is equivalent to searching for  that value of s at 
whch  the  input rate ST equals the  instantaneous  throughput, 
denoted by S,,,,(n) and defined as 

The  solution is obtained by solving for s in  the following non- 
linear equation 

(1 - v)" [(T + 2)(1 - v)se-' + nve-'1 = s(T + 2) .  (29) 

(The  accuracy obtained by using these approximate expressions 
has  been successfully verified by  comparing  results using both 
sets of equations,  exact and approximate.)  In Fig. 5 ,  the 
family of equilibrium contours  for various v are  displayed. We 
see that if we increase the average retransmission  delay  (by 
decreasing v), these  equilibrium contours move upwards. 

We have so far  defined the equilibrium contours based on a 
fluid approximation interpretation;  that is, we let  the expected 
number  of successful packets over a  cycle, Ps(n), be  equal to 
the  expected  number of newly  generated packets over the 
cycle, Sin(n, u). The  direction of fluid  flow is simply deter- 
mined by  the  tendency  the system  has to increase the channel 
backlog  (and  this  occurs  when P,(n) < Sin(n, u), i.e., the  point 
(n,  Si,(n, a)) lies outside the equilibrium contour) or to 
decrease the channel  backlog (P,(n) > Sin(n, u), i.e., the  point 
(n ,  Sin(n, u)) lies inside the equilibrium contour).  Note  that 
these equilibrium contours have the same shape as those 
encountered in slotted ALOHA channels [3 ,4]  . 

Under the  approximation  that [A(n)/(T + l)] E n,  we have 

Sin(n, U )  Sin'(% U )  = (M -  UT. 

AS in [4], given M and u, we define the channel  load  line in 
the (n ,  S) plane as the line S = (M - n)oT which intercepts  the 
n-axis at n = M and  has  a slope equal to -(l/uT). Stability 
here is also defined as in [4] and [9]. We quote  their discus- 
sion  below. 

"A channel load line may intersect (nontangentially) 
the equilibrium contour  one  or  more times, and we refer 
to these as equilibrium points  denoted by ( n e ,  Se). An 
equilibrium point  on a load line is  said to be a stable 
equilibrium  point if it acts as a 'sink'  with respect to  the 
drift of N t ;  it is said to be an unstable  equilibrium  point 
if it acts as a 'source'. A stable  equilibrium point is said 
to be a channel  operating  point if ne < nmax as shown 
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Fig. 5. Equilibrium  Contours. 

.8 .9 

in Fig. 6. It is  said to be  a channel saturation point if 
ne > nmax.  (We shall used ( n o ,  SO) instead of ( n e ,  S,) 
to distinguish  a  channel  operating point  from  other 

. equilibrium  points.) A channel  load  line is said to be sta- 
ble if it  has  exactly one stable  equilibrium  point.;  other- 
wise, it is said to  be unstable. Thus  the load  lines  labeled 
1 and 3 in Fig. 6 are  stable  by  definition;  the  load  line 
labled 2 is unstable.  In  a  stable  channel,  the  equilibrium 
point ( n e ,  S,) determines  the  steady-state  throughput- 
delay  performance of the  channel over an  infinite  time 
horizon.  On  the  other  had, an  unstable  channel  exhibits 
'bistable'  behavior; the  throughput-delay  performance 
given by  the  channel  operating  point is achievable  only 
for  a  finite  time  period  before  the  channel  drifts  towards 
the  channel  saturation  point. When this  happens,  the 
channel  performance  degrades  rapidly as the  channel 
throughput  rate decreases  and the average packet  delay 
increases. The  channel load line  labeled 3 in Fig. 6 has a 
channel  saturation  point as its  only  stable  equilibrium 
point.  It is overloaded in the sense that M" is too big for 
the given u and v. From now on, a  stable  channel  load 
line will always  refer to 1 instead of 3." 

In Figs. 7(a, b) we show  actual  load  lines  corresponding to the 
above  cases; the  stationary  channel  performance (z, SOut) as 
calculated  from Eqs. (17)  and (20) is shown on  each of the 
load  lines. We note  for  stable  channels  that  the average sta- 

M 

k 

M' 

"ma, 

C 

Fig 

I\ 0 STABLE CHANNEL LOAD LINE 
6) UNSTABLE  CHANNEL  LOAD LINE 

ll \\ 0 CHANNEL OPERATING POINT 
rn CHANNEL SATURATION POINT 
0 UNSTABLE EQUILIBRIUM POINT 

- S  
Smax 

. 6 .  Hypothetical  Stable  and  Unstable  Channels [ 9 ] .  

SLOTTED  NON - PERSISTENT  CSMA 

T = 100 
0 STATIONARY  PERFORMANCE 

(c) Y =  1115 

Id) v =  1120 

.1  .2 .3 .4 .5 .6 .7 .8 .9 1 

AVERAGE CHANNEL  INPUT Sin (Nfe, (I) 

Fig. 7. Examples of Actual  Stable  and  Unstable  Channels in Slotted 
Nonpersistent CSMA. 

tionary  performance  coincides  with  the  operating  point (no, 
So), while for  overloaded  channels, it  coincides with the 
channel  saturation  point;  for  unstable  channels, the average 
stationary  performance lies between  the  operating  point  and 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2009 at 03:01 from IEEE Xplore.  Restrictions apply. 



IOBAGI AND  KLEINROCK:  PACKET SWITCHING IN RADIO  CHANNELS:  PART IV 1111 

0.3 I , 1 I I I I 1 1  

SLOTTED  NONPERSISTENT CSMA 
M=50. T=100. u=1/15 

0.2 - 

MoT=0.7 
STABLE CHANNEL 0.1 - 

.- 0 I I I I I . .  I I I 1 I I I 
I; 

0.1 0 I I I I I I I 1 1  
L 

U UNSTABLE  (BISTABLE)  CHANNEL 
MoT=O.9 

0.06 
v) z 

0.04 
t 
k 
2 0.02 
m 

n 

0 . 1 7  o'081 SATURATED  CHANNEL 

0.06 

MoT=l 

0 .041 

0 . 0 2 L  0 0 10 20 30 

- 

40 

CHANNEL  BACKLOG  Nfe=i 

Fig. 8. Stationary Backlog Distribution  for  Stable,  Unstable,  and 
Saturated  Channels. 

the  saturation  point. These statements are verified by observing 
that, as displayed in Fig. 8, the  density  function of the 
stationary backlog distribution II obtained by analysis in 
Section 3 is concentrated  around no for a  stable channel, is 
concentrated  around  the  saturation  point  for  an overloaded 
channel, and exhibits  the bistable behavior for unstable 
channels. 

As in  slotted ALOHA channels [4] ,  we also see that as the 
number of channel users M increases, an originally stable 
channel  becomes unstable  although  the channel input  rate SO 
at  the  operating  point  may be made to remain constant (by 
reducing 0). In Fig. 9, we show  that an originally unstable 
channel  can be rendered  stable by selecting v smaller than a 
critical value, below  which the system performance is excel- 
lent  and  only slightly sensitive to v. (Some simulation results 
of the  feedback model for M = 50 are also shown in Fig. 9. 
Results from  both analysis and simulation agree beautifully.) 

The channel load line of an infinite  population  model is a 
vertical line.  This is always an unstable channel  according to 
the  stability  definition.  (Note  that N = m is a  stable  equilib- 
rium point; i.e., the channel saturation  point.) In fact, since 
N t e  has an  infinite  state space and Si,(n, u) > P,(n) for n > 
n,, where n, is the  unstable equilibrium point (see Fig. 6), a 
stationary  probability  distribution does  not  exist for N t e .  
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(See, for  example, Cohen [lo,  pp.  543-5461,  for  such a 
proof.) 

FET: A Stability Measure 

Kleinrock and Lam [4]  extended these  stability  considera- 
tions  by defining  a stability measure for  unstable channels. For 
this they considered the load line of an unstable channel to be 
partitioned  into  two regions: the safe region consisting of the 
system states (0, 1, 2, 1.-, n,} and  the unsafe region consisting 
of the system states {n,  + 1, e.., M}.  The  stability measure 
refers to  the average time  to  exit  into  the unsafe region 
starting  from a  safe  channel state. More precisely, they define 
FET  to be the average first  exit  time into  the unsafe region 
starting  from an initially empty channel ( N t e  = 0). Thus,  FET 
gives an approximate measure of the average uptime  of  an 
unstable channel. 

The derivations of FET are based upon well-known results 
of first passage times  in the  theory of Markov chains with 
stationary  transition probabilities [ 11, 121 . (The  derivations 
apply  to  the  infinite M case as well.) Consider the  modified 
state space (0 ,  1, 2, ..., n,, nu} where nu is an absorbing state 
obtained  by merging the  entire unsafe region into a single state 
nu with the  transition  probability P,U,nu = 1. Define the 
random variable Ti as the  number of transitions which N t e  
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Fig. 10. FET Values for  the  Infinite  Population Model ( T =  100). 

goes through before it  enters  the unsafe region for  the first 
time starting  from  state i in,  the safe region. Let Ti be the 
expected value of Ti. For all i (0 < i < n,), it is easily shown 
[ I  11 that 

M 
+ T +  1, with  probability p i z  

1 -6i I=n,+l 

T i =  { 
+ T + 1 + Ti, with  probability pij (31) 

This  leads to  the following set of n, + 1 linear simultaneous 
equations which { T i } i = o n ~  must satisfy: 

1 n -  
Ti = I+ T +  1 -4- p i j T j ,  
- 

1 - 6 i  j =  0 
O<i<n,. 

The  stability measure FET is actually To. Given the  fact  that 
pij = 0 for j < i - 2, we can use a recursive algorithm derived 
in [4, Appendix]  to solve the above system.  This  algorithm 
is very  efficient  in terms of space requirements in that  at each 
iteration  it requires only a single row of the  transition  matrix 
and uses each element  in  the row exactly  once. (This algorithm 
is  given in  Appendix B.) As applied to  our case,  a  considerable 
saving in  storage is obtained by realizing that, as shown in 
Appendix B, individual rows of P can  be computed  separately. 

In Fig. 10, we show  FET as a function of the average 
retransmission delay, l / v T ,  for  the  infinite  population  model 
and for  fixed values of the channel throughput  rate ST. FET 
can be improved  by  increasing l / v T ,  which  in turn increases 
the average packet dleay. Fig. 1 1  displays similar curves for  the 

M = 1000 case. Note  the  improvement  in  FET  for  the  finite 
population. 

Channel Perfomance During the Uptime of Unstable  Channels 

Initiating an unstable channel (M, u, v) at  time t = 0 in the 
zero  state,  the system  remains  in the safe region for a period  of 
time equal to To.  At  time To,  the backlog reaches n, + 1 ; 
since for N t e  > n, the  drift  on  the  load line is in the  direction 
of increasing  backlog, the channel is considered to have failed, 
although  it  has a non-zero  probability  of  returning to  the safe 
region;  in  practical situations, we assume that  the channel is 
restarted anew with a zero backlog whenever it “fails.” Oper- 
ating the system  in  this mode,  the  question of interest is: what 
is the average delay of those  packets successfully transmitted 
during the  uptime of the  channel? 

Consider the (reducible) imbedded Markov chain on  the 
modified  state space ( 0 ,  1, 2, ..., n,, nu}  described above and 
diagrammed in Fig. 12(a). We model  the cold restart  of  the 
channel every time it fails by allowing a return  transition of 
probability 1 from  state nu back to state 0 (see Fig. 12(b)). 
N f e  is now a finite irreducible Markov chain characterized by 
the  transition  matrix PCrn ) = (pij(rn )) given by 

i, j = 0 ,  1, .-, n, 

p i l ,  i = 0,1, .-,n,; j = nu 

i=n,;  j =  1,2;..,n, 

i=n, ;  j = O .  (33) 
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Fig. 12. Markov Chain State Diagrams. (a) With an Absorbing State 
nu.  (b) Modeling Cold Restarts. 

Let I I c m )  = 7 r 2 ( m ) ,  .-, ? I , ~ ( ~ ) }  be the  stationary 
probability  distribution. I I c m )  is the  solution of the system 

Despite the presence of P " , , ~  = 1 which violates the original 
property p i j  = 0, j < i - 2, we show  in  Appendix C that  there 
is still a recursive method  to solve system (34). 

Given ncm), the  packet delay D ( m )  (averaged over all 
successful packets)  during the  uptime of unstable channels is 
given by 

Proof: The average packet delay is obtained as the  ratio of 
the  time integral of the backlog over a  long  period of time to 
the  number of successful packets over that  period. Consider a 
period of  time consisting of a large number L of cycles where 
L 9 FET.  The  time integral of the backlog over the period is 
given by 

The  number of successful packets  during the L cycles is given 
by 

Taking the  ratio, dividing by T and  letting L -+ 00, we get the 
normalized  delay D ( m )  as expressed  in Eq. (35).$ Q.E.D. 

In Fig. 13 we show  the  throughput-delay  performance  for 
the  slotted ALOHA and CSMA infinite  population models 

'A simpler  expression is obtained  by  approximating A(i)  by (T  f 
l)i for i 2 1 and A(0)  by T + 1. 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2009 at 03:01 from IEEE Xplore.  Restrictions apply. 



1114 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-25, NO. 10, OCTOBER 1977 

500 i I I I I r I I I I 1 
i 

200 - 

100 - 

T I  
0 -  
2 50- 
z -  
3 

U 

- 

- z -  
2 20- 

s 1 0 -  

2 :  

1 
w 

I- 
n 

u -  

5 -  

SLOTTED 
SLOTTED NONPERSISTENT 

INFINITE POPULATION MODEL 
T=100 

CSMA i 
FET > 1  DAY 

FET> 1 HR 

OWER ENVELOPE / 
FET - 0 / /I1 A 

/ 

/ / 
/ 

- 

F E T 2  1  HR - 
F E T 2  1  DAY - 

- 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

CHANNEL  THROUGHPUT ST 
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Model ( T  = 100). 

with  guaranteed  FET of 1 minute, 1 hour, 1 day and 1 month. 
We note  that  the  degradation in performance  due to increasing 
FET from 1 minute  to 1 month is not very significant. 
Although  the delay is theoretically  infinite  for  FET = 00, the 
delay  degradation due to  increasing FET becomes less im- 
portant  with larger FET so that very ,good  performance can 
practically be achieved over extremely long  periods of  time. 
This is easily explained  by observing that  the  FET curves for 
constant S in Fig. 10 become  very steep  with increasing 
retransmission  delays. We also show in Fig. 13 the  throughput- 
delay  results fok the  infinite  population as obtained  in  Part I 
[ l ]  by  simulation; we note  that these  results were a rather 
conservative prediction. of the  true  performance of CSMA 
channels for a  period ot  time of at least 1 month. Fig. 14 dis- 
plays similar results for  the M = 1000 case; the  FET = 00 
throughput-delay curve is obtained  through  the  steady-state 
analysis of Section 3. Corresponding  results for  slotted ALOHA 
are also shown  on  both Figs. 13 and 14 for comparative pur- 
poses; the comparison demonstrates  once  more  the clear 
superiority of CSMA over slotted ALOHA. 

total  throughput  acheved, S o .  This is best seen in Fig. 15 
where we plot  packet delay versus M for fixed throughput. 
Dynamic control procedures  can be applied  which will enable 
an originally unstable channel to achieve a throughput-delay 
performance close to its desired operating  point  with guar- 
anteed  stability, i.e., over an  infinite  time  horizon. Conversely, 
these procedures can be applied  in order to improve the (high-) 
delay performance of a stable channel with large M. In  the 
context of slotted  ALOHA,  two classes of control  actions 
were considered in [9] ; namely,  the  input  control  and  the 
retransmission control.  The  input  control  procedure allows 
the channel to  either accept or reject  new packets  from  their 
sources. The retransmission control procedure allows the 
channel transmitters to impose either large or small retransmis- 
sion  delays on previously collided  packets. For  the  purpose  of 
here  illustrating the  improvement in the  performance  and 
stability of CSMA due to  control, we limit ourselves to  the 
second class of control. 

A Dynamic  Retransmission  Control Policy 

Given N f e  = n ,  the  instantaneous  throughput over the cycle 
5 .  IMPROVED  PERFoRMANCE S,,,(n) was defined in  Eq. (28) and is explicitly  expressed for 

IN CSMA CHANNELS the  finite M case as 

If M is finite, a  stable  channel  can always be achieved by 
using a sufficiently small v. Of course, a small v implies that ___ (1 -v)"(M-n)oT+nv(l -v)"-'[l -(M-n)a]T 
the equilibrium  backlog size is large and hence  the average 1 + ( T +  1)[1 - (1 - v)"(l - ( M -  n)o)] 
packet delay is also large. We also note  for a stable channel 
that, as M increases, the  packet delay increases for  the same (36)  
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and for the  infinite  population case as 

___ ( I  - v)"se-ST + nv(1 - v)n-le-ST 
Sou,(n) = ~ - .  ' (37) 

1 + ( T +  1)[1 - ( I  - ~ ) " e - ~ ]  

Sout(n) is a function of v and is characterized by  the  fact 
that,  for fixed v, it goes to  zero  with increasing values of n.  
Assuming now  that each  user knows  the  exact  state of the 
system  at  the beginning  of  a cycle,§  then  one can  improve the 
performance by  maximizing the  instantaneous  throughput 
over the retransmission probability v. Let v*(n) denote  this 
optimum. We shall seek  a simple expression for v*(n) and 
study  the  effect  of applying this  dynamic  control on the 
stability  and  the overall performance of CSMA channels. 

The above  expressions for Sout(n) are complex  and  depend 
on several system  parameters,  namely M ,  u, and T ;  an  exact 
optimization of Sout(n) is untractable.  Fortunately, some 
approximations are again possible here whch significantly 
reduce the  complexity of the  problem.  First, we know  that 
Eq. (37) is a very accurate  expression, even for  finite M ,  as 
long as  we take s = Mu. Furthermore, we observe" for various 
values of v in the vicinity  of v* that a very good approximation 
for Sout(n) is obtained by setting s = 0, yielding the relatively 
simple  expression 

'nv(1 - Zy-17- 

1 + ( T +  1)[1 - (1 - v)"] 
sout(n> 

Taking the derivative of Eq. (38), we  see that v* is the  solution 
of the following equation: 

( T f l ) y " - ( T + 2 ) n y + ( T + 2 ) ( 1 2 - 1 ) = 0  (39) 

where y = 1 - v. Although  the  current  problem is much 
simpler than  the original one,  it remains  impractical in  that we 
require either  that each  terminal be able to  numerically solve 
Eq.  (39) given n ,  or that each  terminal contain a table  for 
v*(n) as a function. of n. However, further simplifications of 
Sout(n) are possible by approximating (1 - v)k by 1 - kv in 
Eq. (38). We get 

nv[l  - (n - l)v] T 
scJut(n> = 1 + (T + 1)nv 

§In practical  situations, the assumption  that each  user knows  the 
exact  current  state  of  the system  clearly does  not  hold.  The  channel 
users  have no means  of  communication,among themselves other  than 
the multiaccess  broadcast  channel  itself.  However,  each  channel  user 
may  individually estimate the channel  state  by observing the channel 
outcome over  some  period  of time,  and  apply  a  control  action based 
upon  the  estimate.  In  the  context  of  slotted ALOHA,  Lam and Klein- 
rock [9] give some  heuristic  control-estimation  algorithms  which  prove 
to  be very  satisfactory.  With  appropriate  modifications  and  extensions, 
these  algorithms  can  be  applied to CSMA channels  as  well.  However, 
this is considered  outside  the  scope  of  this  paper. The results  here  ob- 
tained  assuming full  knowledge  of  the  system  state will then  represent 
the  ultimate  performance;  a  bound  on  the  performance  obtained via 
heuristic  estimation  algorithms. 

"A numerical  check  has  been  performed  for  a  wide  range  of  the 
system  parameters M ,  u and T substantiating the validity  of  these and 
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Performance. 

The derivative of this last  yields the second degree equation 

( T +  l)n(n - l )v2  + 2(n - 1)v 1 = 0. (41) 

The  optimum v* (the  solution of Eq. (41)) is  given by 

Neglecting 1 as compared to  T ,  T T  and n ,  we finally  get the 
simple expression for v* given by# 

i f n  = 0 

i f n >  1 (43) 

The  optimum  instantaneous  throughput is now  characterized 
by  the  fact  that  it reaches  a non-zero  limit as n +. m, namely 

#It  has  been verified that  this  simple'exprsssion  for v* gives an in- 
the following  approximations.  stantaneous  throughput  extremely close to  the  true maximum. 
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where a = I/T. Eq. (44) actually  represents  a closed form 
expression for  the  capacity of CSMA channels, since for  any 
n < 00, the average instantaneous  throughput is bounded  from 
below by C(a). Essentially, the  dynamic  control v*(n) has  the 
effect  of providing an  equilibrium contour consisting of 
basically a vertical line at an abscissa equal to C(a). 

The steady-state  performance of  a controlled CSMA chan- 
nel is easily obtained  from  the analysis presented in  Section 3,  
whereby row i of P is obtained by replacing v by v*(i). In 
Fig. 16,  we show  the  steady-state  performance of controlled 
CSMA channels for various values of M and T.  By comparing 
the T = 100 case of Fig. 16 to Fig. 3 ,  which displays the 
analogous  results for  uncontrolled channels, we note  that  there 
is a  significant improvement  in  delay, particularly with large 
populations. This is best seen in Fig. 17,   whch displays the 
packet delay for  controlled channels as a function of M for 
fured throughput,  when  compared,to Fig. 15. 

Thus, the application of  dynamic retransmission control 
provides  us with a  significantly  improved performance which 
is insensitive to  the  population size. 

6.  CONCLUSION 

In this  paper,  the  dynamic behavior  and stability of nonper- 
sistent CSMA were studied using a  simple  linear feedback 
model.  First, an exact analysis of this  model allowed us  to 
analytically obtain  the  throughput-delay  performance of 
nonpersistent CSMA as well as the  effect of the retransmission 
delay on the channel performance.  Secondly,  the  stability 
theory based on  this  model  (proposed in [4] in  the  context  of 
slotted ALOHA) which  characterizes the  instability  phenom- 
enon by  defining stable  and  unstable channels, was reviewed 
and  shown  to be applicable to  CSMA. It was shown  that 

4 

CSMA theoretically  exhibits a  behavior similar to ALOHA. 
However, in  practical situations, as long as M < 1000, we 
showed that CSMA practically  provides excellent  true stable 
performance. We also gave an analysis (based on  stationary 
input rate) for  the channel  performance during  the  uptime of 
unstable  channels. Since most practical systems have peak  load 
periods  followed by slack  periods  of  low use, the  throughput- 
delay-stability tradeoffs  obtained will hold  for  such systems 
as long as the peak  periods do  not  approach  FET. Finally, we 
showed that  the applicability  of dynamic  control  can  further 
improve the  perforamnce significantly  and  can support far 
larger populations  than  can  the  uncontrolled case. 

APPENDIX A 

Solution of the  System n = nP 

Given the special form of matrices R and Q (see Eqs. (3) 
and (S) ) ,  we note  that  the  matrix P is almost  triangular, that  is, 
for all i E (0, M ) ,  

f O ,  ( i - l ) + < j < M - ( M - i - T - 2 ) +  
P ij I=  0 ,  

otherwise 

where for any  integer a, (a)+ 6 max (0, a), particularly pii = 0 
for j < i - 1. Therefore Il = n P  can be solved recursively by 
using the following formula 

starting  with no = 1. n is then normalized so that  its  elements 
sum to  one. 
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It is clear for  the above algorithm that  in  computing rj+: 
we only  need { n ( j - T - 2 ) + ,  -., nj} and {p i j } i= ( j -T- z )+~ ,   e i - l  = - [et - 5 
namely,  the  nonzero  elements of the  jth  column of P. In the 
sequel, we show  that we can compute individual columns of P 
independently,  and  therefore reduce the storage  requirements fiP1 = - [ f t  - hi - 2 Pijh] 
significantly. Pi , i -1  j =  i 

element  of A .  In  computing  the j th  column of matrix P" = 3, Let 
RQT+l ,  we first note  that  for all rn 2 1,  the  jth  column of nc  

Qm is computed  in  terms of the  jth  column of Qm-l b Y fo - ' 0  - I= 

Pi , i -1  I =  i 

1 

For  any  arbitrary  matrix A ,  let (A),. denote  the (i, j)th 

(Qm)ij = [ 1 - (M - i)a] (Qm-l) i j  

+ (M - i)o(Qm-l)i+l,j, ( j  - rn - 1)' < i < j .  j =  0 

ti = e . t  +fi, i = 0,  1 , 2 ,  " ' , n ,  -- 1 
1 nc 

Similarly, the  jth  column of P"is computed as The derivation of the algorithm  can  be fourld in  [4,  Appendix] ; 
it is due to  the  fact  that p i j  = 0 for j < i - 2. Since  in  this 

(M - i)o algorithm the  ith  row { p i j } j = i n c  is used exactly  once, a con- 

1 - (1 - v)' [ I  - (M - i ) ~ ]  siderable saving in  the storage requirement is obtained  by 
realizing, as in Appendix A, that individual  rows of P can be 

+ (M - i)a computed  independently. 

1 - ( I  - v)'[l - ( M -  i>o] (QT+l)i+l,j? The  ith  row of RQm , rn 2 1, is  given in  terms of the ith row 
ofRQrn-l bv - 

( j -  T -  2 ) + < i < j .  (A.3) 

The  computation of the  jth  column of P requires the  jth  and 
( j  + 1)st columns of P" for  the final step - [ l - ( M - j ) o ] ,   i < j < h f - ( M - i - r n -   I ) +  

(RQm)i,j = (ROm-l)i,j-l(M - j + 1)o + (RQm-l)i,j - 

(B.3) 
Pi j  = (P")ij[1 -~,( i ) ]  + (P')i,j+lPs(il. (-4.4) 

This demonstrates  that we need only  store  two  columns  of P" 
at  any  time,  and this amounts  to 2T + 6 nonzero elements. 

and finally, the  ith row of P is given by 

p i j  = (RQT+l ) i , j [ l  -Ps(i)] + (RQT+l) i , j+lP,( i ) ,  

APPENDIX B (i- 1)+ < j < M -  (M-.i- T -  2)+. (B.4) 

the  input rate of the  infinite  population  and  let a(i) be  de- 
(B.1) fined as 

.~ 
1 -e-= 

t i = h i +  2 p i j t j ,  i =  1 ,2 , - . , nc .  
j=1 -1  

The  Algorithm (3, 41 
1) Define 

e n ,  = 1 

f n ,  = 0. 

pij = a(i) [ 1 - Ps(i)] ( ::-' 1) sj-i--l(l - s )T+2- j+ i  

+ [ [ 1 - a(i)] [ 1 - P,(i)] + a(i)P,(i)] (T+ 1) 
1 - 1  

2) For i = n ,  - 1, n,  - 2, -., 1 solve recursively . (1 - s)T+l-j+i + [1 - a(i)Ip,(i) 

**From  reference [4 ] .  . (1 - S)T--i+i.  (B.5) 
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APPENDIX C 

Recursive  Solution of the  System ncm) = l I ( m ) # m )  

The  transition  matfix P ( m )  is characterized by p i j ( h )  =, 0 
for j < i - 2, with  the  exception of pnu,O(m)  = 1. The 
recursive formula (A.l)  to  compute rj+l(m) in terms of 

f o r i  = 0 we have 
( r ( j -*-z )+  ( m  ), -., rjcm)} is still valid for j > 1 ; however, 

Given Eqs. (C.l) and (A.l ) ,  we can  express  each rj (m);  j = 1 ,  
2 ,  e - ,  nu, as a  linear combination of  and r n U ( m )  

nj (m ) = a.77 ( m  + b .r ( m )  
1 0  I ” u  (C .2) 

whereby the coefficients {aj} and {b j }  are computed  by  the 
following recursive system (obtained by using Eqs. (C.l) and 
(A.1)): 

Setting r O ( m )  = 1 and r, ( m )  = anu/(l  - bnU),  we solve for 
r ~ ( ~ ) ,  i = 1 ,  2, .-, n,. nYm) is then normalized to  yield the 
stationary  distribution desired. 
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